화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.9, 2536-2540, September, 2017
The effect of cetyltrimethylammonium bromide on the coefficient of thermal expansion and optical transmittance of poly(ether sulfone) film
E-mail:
Cetyltrimethylammonium bromide (CTAB) was used as a stabilizing agent for PES films, and its effect on the coefficient of thermal expansion (CTE) and optical transmittance (OT) of PES films was investigated. The CTE of PES film decreased with increasing CTAB concentration up to 0.5 wt%, because of the improved intermolecular interaction between polymer chains via CTAB molecules. When 0.5 wt% of CTAB was added to the PES film, the CTE of polymer film decreased from 66 to 50 ppm/°C without noticeable reduction in OT. At such a low CTAB concentration range (<0.5 wt%), the glass transition temperature (Tg) and tensile strength increased with CTAB. At high CTAB concentration above 0.5 wt%, however, it had a negative effect on the properties of PES film - CTE increased but Tg and ensile strength decreased with it.
  1. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913 (1987)
  2. Findlay N, Breig B, Forbes C, Inigo A, Kanibolotsky A, Skabara P, J. Mater. Chem., 4, 3774 (2016)
  3. Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S, Chem. C, 3, 2974 (2015)
  4. Kim J, Song M, Seol J, Hwang H, Park C, Korean J. Chem. Eng., 22(4), 643 (2005)
  5. Lee DH, Choi J, Chae H, Chung CH, Cho SM, Korean J. Chem. Eng., 25(1), 176 (2008)
  6. Guo Y, Wang H, Wang C, Zhang Y, US Patent, US 9,281,493 (2016).
  7. Salem A, Akkerman HB, van de Weijer P, Bouten PC, Shen J, de Winter SH, Kudlacek P, Panditha P, Fledderus H, van Glabbeek JJ, in Thin-film flexible barriers for PV applications and OLED lighting, pp. 1661-1663, IEEE (2016).
  8. Minakata T, Tanamura M, Mitamura Y, Imashiro M, Horiguchi A, Sugimoto A, Yamashita M, Yada Y, Ibaraki N, Tomiyasu H, in Challenges for ultra-thin and highly flexible OLEDs fabricated by roll to roll process, pp. 1-2, IEEE (2016).
  9. Wang Z, Helander M, Qiu J, Puzzo D, Greiner M, Hudson Z, Wang S, Liu Z, Lu Z, Nature Photonics, 5, 753 (2011)
  10. May C, in Fabrication Technologies for Flexible OLED Lighting Modules, p. SSTh2B. 5, Optical Society of America (2016).
  11. Lewis J, Mater. Today, 9, 38 (2006)
  12. MacDonald WA, J. Mater. Chem., 14, 4 (2004)
  13. Lei PH, Hsu CM, Fan YS, Org. Electronics, 14, 236 (2013)
  14. Suzuki N, Kiba S, Yamauchi Y, Phys. Chem. Chem. Phys., 13, 4957 (2011)
  15. Wei C, Srivastava D, Cho K, Nano Lett., 2, 647 (2002)
  16. Vo NT, Patra AK, Kim D, Phys. Chem. Chem. Phys., 19, 1937 (2017)
  17. Cho EB, Kim D, Jaroniec M, J. Phys. Chem., 112, 4897 (2008)
  18. Tang QY, Chan YC, Wong NB, Cheung R, Polymer International, 59, 1240 (2010)
  19. Soares AR, Ponton PI, Mancic L, d'Almeida JRM, Romao CP, White MA, Marinkovic BA, J. Mater. Sci., 49(22), 7870 (2014)
  20. Rahimpour A, Madaeni SS, Mansourpanah Y, J. Membr. Sci., 296(1-2), 110 (2007)
  21. Cunningham TP, Cooper DL, Gerratt J, Karadakov PB, Raimondi M, J. Chem. Soc.-Faraday Trans., 93, 2247 (1997)
  22. Muthumeenal A, Pethaiah SS, Nagendran A, Renew. Energy, 91, 75 (2016)
  23. Wang H, Wu C, Wei Z, Li C, Liu Q, RSC Adv., 6, 4673 (2016)
  24. Han J, Lee W, Choi JM, Patel R, Min BR, J. Membr. Sci., 351(1-2), 141 (2010)
  25. Zhao CS, Yu BY, Qian BS, Wei Q, Yang KG, Zhang AM, J. Membr. Sci., 310(1-2), 38 (2008)
  26. Le Roux JD, Van Schalkwyk OG, J. Appl. Polym. Sci., 71(1), 163 (1999)
  27. Wang DM, Lin FC, Wu TT, Lai JY, J. Membr. Sci., 142(2), 191 (1998)
  28. Tsai HA, Ruaan RC, Wang DM, Lai JY, J. Appl. Polym. Sci., 86(1), 166 (2002)
  29. Saedi S, Madaeni SS, Shamsabadi AA, Mottaghi F, Sep. Purif. Technol., 99, 104 (2012)