Korean Journal of Materials Research, Vol.27, No.5, 255-262, May, 2017
Detection of Oxygen Species Generated from Ag2Se-Graphene Detection of Oxygen Species Generated from Ag2Se-Graphene Light Driven Photocatalytic Performance
E-mail:,
Reactive oxygen species (ROS) can be produced by interactions between sunlight and light absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified Ag2Se nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the Ag2Se-graphene (Ag2Se-G) samples showed catastrophic decrease due to deposition of Ag2Se. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with Ag2Se composites increased significantly due to a synergetic effect between graphene and the Ag2Se nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB)and industrial dyes such as Texbrite BA-L (TBA) under visible light.
- Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY, Appl. Catal. B: Environ., 98(1-2), 27 (2010)
- Xu P, Xu T, Lu J, Gao SM, Hosmane NS, Huang BB, Dai Y, Wang YB, Energy Environ. Sci., 3, 1128 (2010)
- Bagwasi S, Tian BZ, Zhang JL, Nasir M, Chem. Eng. J., 217, 108 (2013)
- Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY, Appl. Catal. B: Environ., 98(1-2), 27 (2010)
- Liu H, Dong XN, Wang XC, Sun CC, Li JQ, Zhu ZF, Chem. Eng. J., 230, 279 (2013)
- Meng ZD, Peng MM, Zhu L, Oh WC, Appl. Catal. B: Environ., 113-114, 141 (2012)
- Mosselmans JFW, Pattrick RAD, van der Laan G, Charnock JM, Vaughan DJ, Henderson CMB, Garner CD, Phys. Chem. Minerals, 22, 311 (1995)
- Nakashima N, Ishii T, Shirakusa M, Nakanishi T, Murakami H, Sagara T, Chem. Eur. J, 7, 1766 (2001)
- Zhao JJ, Jiang BT, Zhang SY, Niu HL, Jin BK, Tian YP, Sci. China Ser. B, Chem, 52, 2213 (2009)
- Pathan HM, Lokhande CD, Bull. Mater. Sci., 27, 85 (2004)
- Buschmann V, Van Tendeloo G, Monnoyer P, Nagy JB, Langmuir, 14(7), 1528 (1998)
- Wang J, Guo YW, Liu B, Jin XD, Liu LJ, Xu R, Kong YM, Wang BX, Ultrason. Sonochem., 18, 177 (2011)
- Zhang XW, Zhou MH, Lei LC, Carbon, 43, 1700 (2005)
- Tubtimtae A, Lee MW, Wang GJ, J. Power Sources, 196(15), 6603 (2011)
- Liu JC, Bai HW, Wang YJ, Liu ZY, Zhang XW, Sun DD, Adv. Funct. Mater., 20(23), 4175 (2010)
- Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
- Meng ZD, Ghosh T, Zhu L, Choi JG, Park CY, Oh WC, J Mater. Chem., 22, 16127 (2012)
- Cui Y, Chen G, Ren J, Shao M, Xie Y, Qian Y, J. Solid State Chem., 172, 17 (2003)
- Nagasuna K, Akita T, Fujishima M, Tada H, Langmuir, 27(11), 7294 (2011)
- Donohue MD, Aranovich GL, Fluid Phase Equilib., 158-160, 557 (1999)
- Kim HI, Moon GH, Satoca DM, Park Y, Choi WY, J. Phys. Chem. C, 116, 1535 (2012)
- Meng ZD, Zhang K, Oh WC, Korean J. Mater. Res., 20(4), 228 (2010)
- Azumi R, Kakiuchi K, Matsumoto M, Bull. Chem. Soc. Jpn., 76, 1561 (2003)
- Gommans H, Verreet B, Rand BP, Muller R, Poortmans J, Heremans P, Genoe J, Adv. Funct. Mater., 18(22), 3686 (2008)
- Ma DK, Zhang M, Xi GC, Zhang JH, Qian YT, Inorg. Chem., 45(12), 4845 (2006)
- Cao HQ, Xiao YJ, Lu YX, Yin JF, Li BJ, Wu SS, Wu XM, Nano. Res., 12, 863 (2010)