화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.20, No.4, 228-234, April, 2010
Preparation of Different Fe Containing TiO2 Photocatalysts and Comparison of Their Photocatalytic Activity
E-mail:
In this paper, Fe-TiO2 and Fe-fullerene/TiO2 composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. TiO2, Fe-TiO2 and Fe-fullerene/TiO2 were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/TiO2 composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-TiO2 and Fe-fullerene/TiO2 composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of TiO2. The degradation rate of the methylene blue solution increased when using Fe-fullerene/TiO2 compounds.
  1. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219 (2004)
  2. Fujishima, Hashimoto K, Watanabe T, Inc., May 1999. (1999)
  3. Silva CG, Wang W, Faria JL, J. Photochem. Photobiol. A: Chem., 181, 314 (2006)
  4. Shah V, Verma P, Stopka P, Gabriel J, Baldrian P, Nerud F, Appl. Catal. B: Environ., 46(2), 287 (2003)
  5. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 42(4), 319 (2003)
  6. Sauer T, Cesconeto Neto G, Jose HJ, J. Photochem. Photobiol. A: Chem., 149, 147 (2002)
  7. Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol. C, 1, 1 (2000)
  8. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  9. Tada H, Yamamoto M, Ito S, Langmuir, 15(11), 3699 (1999)
  10. Gopal M, Chan WJ, Dejonghe LC, J. Mater. Sci., 32(22), 6001 (1997)
  11. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  12. Minero C, Mariella G, Maurino V, Pelizzetti E, Langmuir, 16(6), 2632 (2000)
  13. Wang C, Bahnemann DF, Dohrmann JK, Chem. Commun., 16, 1539 (2000)
  14. Porath D, Levi Y, Tarabiah M, Millo O, Phys. Rev. B, 56, 9829 (1997)
  15. Brezova V, Stasko A, Asmus KD, Guldi DM, J. Photochem. Photobiol. A: Chem., 117, 61 (1998)
  16. Sclafani A, Mozzanega MN, Pichat P, J. Photochem. Photobiol. A: Chem., 59, 181 (1991)
  17. Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P, Appl. Catal. B: Environ., 42(2), 187 (2003)
  18. Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides SG, Falaras P, J. Catal., 220(1), 127 (2003)
  19. Sun B, Vorontsov AV, Smirniotis PG, Langmuir, 19(8), 3151 (2003)
  20. Vamathevan V, Amal R, Beydoun D, Low G, McEvoy S, J. Photochem. Photobiol. A Chem., 148, 233 (2002)
  21. Wang J, Uma S, Klabunde KJ, Appl. Catal. B: Environ., 48(2), 151 (2004)
  22. O’Regan B, Schwartz DT, J. Appl. Phys., 80, 4749 (1996)
  23. Wang C, Bottcher C, Bahnemann DW, Dohrmann JK, J. Mater. Chem., 13, 2322 (2003)
  24. Nahar S, Hasegawa K, Kagaya S, Chemosphere, 65, 1976 (2006)
  25. Hasobe T, Hattori S, Kanmat PV, Fukuzumi S, Tetrahedron., 62, 1937 (2006)
  26. Inoue T, Kubozono Y, Hiraoka K, Mimura K, Maeda H, Kashino S, Emura S, Uruga T, Nakata Y, J. Synchrotron Radiat., 6, 779 (1999)
  27. Stevenson CD, Noyes JR, Reiter RC, J. Am. Chem. Soc., 122(51), 12905 (2000)
  28. Oh WC, Kim JG, Kim H, Chen ML, Zhang K, Meng ZD, Zhang FJ, Korean J. Mater. Res., 19(11), 569 (2009)
  29. Zhang FJ, Chen ML, Oh WC, Korean J. Mater. Res., 18(11), 583 (2008)
  30. Zhang K, Meng ZD, Oh WC, Korean J. Mater. Res., 20(3), 117 (2010)
  31. Akiyama T, Miyazaki A, Sutoh M, Ichinose I, Kunitake T, Yamada S, Colloids Surf., 169, 137 (2000)
  32. Hasobe T, Hattori S, Kanmat PV, Fukuzumi S, Tetrahedron., 62, 1937 (2006)
  33. Lawrence BE, Carbon, 35, 437 (1997)
  34. Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN, Electrochim. Acta, 47(21), 3545 (2002)
  35. Langa F, Cruz P, Delgado JL, Espildora E, Gomez-Escalonilla MJ, Hoz A, J. Mater. Chem., 12, 2130 (2002)
  36. Oh WC, Jung AR, Ko WB, Mater. Sci. Eng: C., 29, 1338 (2009)
  37. Drees M, Premaratne K, Graupner W, Heflin JR, Appl. Phys. Lett., 81, 4607 (2002)
  38. Smontara A, Tonejc AM, Gradecak S, Tonejc A, Bilusicand A, Lasjaunias JC, Mater. Sci. Eng: C, 19, 21 (2002)
  39. Khalid FA, Beffort O, Klotz UE, Keller BA, Gasser P, Vaucher S, Acta Mater., 51, 4575 (2003)
  40. Gu ZN, Zhang L, Margrave JL, Davydov VA, Rakhmanina AV, Agafonov V, Khabashesku VN, Carbon, 43, 2989 (2005)
  41. Wingkei H, Jimmy CY, Shuncheng L, J. Solid State Chem., 179, 1171 (2006)
  42. Mak SY, Chen DH, Dyes Pigments., 61, 93 (2004)
  43. Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ, Appl. Catal. A: Gen., 306, 120 (2006)
  44. Tayade RJ, Kulkarni RG, Jasra RV, Ind. Eng. Chem. Res., 45(15), 5231 (2006)
  45. Jianhua C, Maosheng Y, Xiaolin W, J. Nanopart. Res., 10, 163 (2008)
  46. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669 (1994)
  47. Oh WC, Ko WB, J. Ind. Eng. Chem., 15(6), 791 (2009)