화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.6, 1651-1660, June, 2017
Perovskite-type LaFe1- xMnxO3 (x=0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical-looping steam methane reforming: Oxidation activity and resistance to carbon formation
E-mail:
The effects of Mn substitution of LaMnxFe1-xO3 (x=0, 0.3, 0.5, 0.7, 1.0) on the oxidation activity and resistance to carbon formation for chemical-looping steam methane reforming (CL-SMR) were investigated. The desired crystalline perovskite phases were formed by transferring from the orthorhombic structure of LaFeO3 to rhombohedral lattice of LaMnO3 as the degree of Mn-doping increased. Manganese ions have a mixed state of Mn3+ and Mn4+ in the LaFe1-xMnxO3, meanwhile inducing the states of highly mixed character of Fe2+, Fe3+ and Fe4+ in iron ions. Substitution of Mn for Fe with proper value not only increases the lattice oxygen, which is conducive to the partial oxidation of CH4 to produce syngas, but also enhances the lattice oxygen mobility from the bulk to the surface of the oxygen carrier particles. Judging from the points of the redox reactivity, resistance to carbon formation and hydrogen generation capacity, the optimal range of the degree of Mn substitution is x=0.3-0.5.
  1. Li KZ, Wang H, Wei YG, Yan DX, Chem. Eng. J., 156(3), 512 (2010)
  2. Otsuka K, Ushiyama T, Yamanaka I, Chem. Lett., 9, 1517 (1993)
  3. Richter HJ, Knoche KF, ACS Symp. Ser., 235, 71 (1983)
  4. Li KZ, Wang H, Wei YG, Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers, J. Chem. 2013, Article ID 294817, 8 pages.
  5. Dai XP, Li RJ, Yu CC, Hao ZP, J. Phys. Chem. B, 110(45), 22525 (2006)
  6. Li RJ, Yu CC, Dai XP, Shen SK, Chin. J. Cata., 23, 549 (2002)
  7. Ryden M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjørgum E, Int. J. Greenh. Gas. Con., 2, 21 (2008)
  8. Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrog. Energy, 34(17), 7162 (2009)
  9. Garcia V, Caldes MT, Joubert O, Gautron E, Mondragon F, Moreno A, Catal. Today, 157(1-4), 177 (2010)
  10. Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrog. Energy, 36(11), 6657 (2011)
  11. Neal LM, Shafiefarhood A, Li FX, ACS Catal., 4, 3560 (2014)
  12. Lim HS, Kang D, Lee JW, Appl. Catal. B: Environ., 202, 175 (2017)
  13. Ryden M, Leion H, Mattisson T, Lyngfelt A, Appl. Energy, 113, 1924 (2014)
  14. Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt A, Energy Fuels, 27(1), 367 (2013)
  15. Wei HJ, Cao Y, Ji WJ, Au CT, Catal. Commun., 9, 2509 (2008)
  16. He F, Li XN, Zhao K, Huang Z, Wei GQ, Li HB, Fuel, 108, 465 (2013)
  17. Zhao K, He F, Huang Z, Wei GQ, Zheng AQ, Li HB, Zhao ZL, Appl. Energy, 168, 193 (2016)
  18. Li JD, Luo GS, Jiang GW, Li WS, Zhou ZY, J. Nanchang University, 34, 279 (2010)
  19. Jauhar S, Dhiman M, Bansal S, Singhal S, J. Sol. Gel. Sci. Technol., 75, 124 (2015)
  20. Atribak I, Bueno-Lopez A, Garcia-Garcia A, J. Catal., 259(1), 123 (2008)
  21. Kan WH, Dong PC, Bae JS, Adams S, Thangadurai V, Solid State Ion., 290, 90 (2016)
  22. Tabata K, Hirano Y, Suzuki E, Appl. Catal. A: Gen., 170(2), 245 (1998)
  23. Li X, Zhang HB, Liu XX, Li SJ, Zhao MY, Mater. Chem. Phys., 38, 355 (1994)
  24. Mihai O, Chen D, Holmen A, J. Catal., 293, 175 (2012)