화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.45, 22525-22531, 2006
Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO(3) (A = La, Nd, Eu) perovskite-type oxides as oxygen storage
Direct partial oxidation of methane to synthesis gas on AFeO(3) (A = La, Nd, Eu) oxides by a novel sequential redox cyclic reaction in the absence of gaseous oxygen was investigated over a fixed-bed reactor. These oxides were prepared by the sol-gel method and characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. XRD analysis showed that all AFeO(3) (A = La, Nd, Eu) oxides, calcined at 1173 K, are single-phase perovskites. The CH4-TPSR/MS and continuous reaction experiments indicated that the AFeO(3) (A = La, Nd, Eu) oxides provide mostly oxygen species, as the sole oxidant originated from lattice oxygen instead of gaseous oxygen, which can oxidize CH4 to synthesis gas with high selectivity in the absence of gaseous oxygen. In terms of material economics and the amount of oxygen species for synthesis gas formation, the LaFeO3 sample exhibits the best performance among these tested AFeO(3) oxides for synthesis gas production. The pulse experiments at different temperatures showed that the rate of oxygen migration during the CH4 reaction with LaFeO3 is strongly affected by the reaction temperature, and increases with rising temperature, which is favorable to much more CH4 selective oxidation at high temperature. The two types of oxygen species are identified by experiments of continuous reactions and pulses, and confirmed by XPS. Methane can be converted selectively to synthesis gas by consumption of lattice oxygen, and general carbonaceous deposits on the catalyst surface do not occur under the appropriate reaction conditions by sequential redox cycles. The performance of selective oxidation of CH4 to synthesis gas can be recovered by reoxidation using gaseous molecular oxygen; the LaFeO3 oxide maintains relatively high catalytic activity and structural stability in redox atmospheres.