화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.495, 130-139, 2017
Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces
Adding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites. Ligand engineering was used to synthesize bimodal ligands onto 15 nm silica nanoparticles consisting of long epoxy compatible, poly(glycidyl methacrylate) (PGMA) chains, and short, pi-conjugated, electroactive surface ligands. Surface initiated RAFT polymerization was used to synthesize multiple graft densities of PGMA chains, ultimately controlling the dispersion of the filler. Thiophene, anthracene, and terthiophene were employed as pi-conjugated surface ligands that act as electron traps to mitigate avalanche breakdown. Investigation of the synthesized multifunctional nanoparticles was effective in defining the maximum particle spacing or free space length (L-f) that still leads to property enhancement, as well as giving insight into the effects of varying the electronic nature of the molecules at the interface