Applied Chemistry for Engineering, Vol.28, No.2, 193-197, April, 2017
아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구
A Study on the Removal of Complex Odor including Acetaldehyde and Ozone Over Manganese-based Catalysts
E-mail:
초록
본 연구에서는 대형 직화구이 음식점으로부터 배출되는 유증기 및 미세먼지 제거를 위해 습식 플라즈마 전기집진 공정을 적용할 경우, 집진공정 후단에서 나오는 잔여 오존을 활용하여 제거되지 않은 아세트알데히드와 오존을 제거함으로써 복합악취를 저감할 수 있는 오존 산화 촉매 공정을 개발하였다. 망간산화물 기반 촉매는 분말 촉매 제조 후 압출하여 펠렛 형태로 성형하였으며, 성형촉매 상에서 아세트알데히드와 오존 모두 높은 제거율을 나타낼 수 있도 록 최적 조건을 도출하고자 하였다. 제조한 Mn2O3와 CuMnOx 촉매는 각각의 성능을 평가하였으며, 이 두 가지 촉매를 2단으로 적용하였을 때 공간속도 10,000 h-1, 반응온도 100 °C인 조건에서 아세트알데히드는 85% 이상, 오존은 100% 저감시킬 수 있었다.
In this study, we report on the catalyst process installed in conjunction with a wet plasma electrostatic precipitator to remove the oil mist and fine dust emitted from large-size grill restaurants. The multi-stage catalyst module reduced odor through catalytic reaction of acetaldehyde on catalysts even at an ambient temperature with ozone as an oxidant readily produced in a wet plasma electrostatic precipitator. Two types of manganese-based catalysts, Mn2O3 and CuMnOx were fabricated by extrusion molding for structured catalysts in practical applications, and the optimum conditions for high removal efficiencies of acetaldehyde and ozone were determined. When two optimized catalysts were applied in a two-stage catalyst module, the removal efficiency of acetaldehyde and ozone were ≥ 85% and 100% respectively at the space velocity of 10,000 h-1 and the reaction temperature of 100 °C.
Keywords:complex odor;wet plasma electrostatic precipitator;acetaldehyde;ozone catalytic oxidation;manganese oxide catalyst
- Hong DW, Kim SJ, Moon DH, Joo CH, Lee JP, J. Korean Soc. Odor Res. Eng., 6(1), 1 (2007)
- Cho YM, Choi YJ, Hong MJ, Study on the Management of Odor Emission in Seoul, Research Report 2013-PR-76, The Seoul Institute, Seoul (2014).
- Chaichanawong J, Tanthapanichakoon W, Chariinpanitkul T, Eiad-ua A, Sano N, Tamon H, Sci. Tech. Adv. Mater., 6, 319 (2005)
- Kim HH, Yamamoto I, Takashima K, Katsura S, Mizuno A, J. Chem. Eng. Jpn., 33(4), 669 (2000)
- Van Durme J, Dewulf J, Demeestere K, Leys C, Van Langenhove H, Appl. Catal. B: Environ., 87(1-2), 78 (2009)
- Van Durme J, Dewulf J, Leys C, Van Langenhove H, Appl. Catal. B: Environ., 78(3-4), 324 (2008)
- Park SH, Jeon JK, Kim SC, Jung SC, Park YK, Appl. Chem. Eng., 25(3), 237 (2014)
- Tichenor BA, Palazzolo MA, Environ. Prog., 6(3), 172 (1987)
- Einaga H, Futamura S, Catal. Commun., 8, 557 (2007)
- Einaga H, Ogata A, J. Hazard. Mater., 164(2-3), 1236 (2009)
- Zhao DZ, Shi C, Lin XS, Zhu AM, Jang BWL, J. Hazard. Mater., 239-240, 362 (2012)
- Buciuman FC, Patcas F, Hahn T, Chem. Eng. Process., 38(4-6), 563 (1999)
- Kang M, Park ED, Kim JM, Yie JE, Catal. Today, 111(3-4), 236 (2006)
- Jung SC, Lee SH, Digit. Policy Res., 10(8), 201 (2012)
- Lee HH, Park KH, Cha WS, Appl. Chem. Eng., 24(6), 599 (2013)
- Papavasiliou J, Avgouropoulos G, Ioannides T, J. Catal., 251(1), 7 (2007)
- Kapteijn F, Singoredjo L, Vandriel M, Andreini A, Moulijn JA, Ramis G, Busca G, J. Catal., 150(1), 105 (1994)