Journal of Industrial and Engineering Chemistry, Vol.46, 111-118, February, 2017
Synthesis of microcrystalline ZnO as an anodic material via a solvothermal method, and its electrochemical performance in Ni/Zn redox battery
E-mail:
Highly crystalline ZnO microparticles were prepared by a conventional solvothermal route by adding ethylenediamine (EDA). The product was analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate its crystallinity and morphology. The ZnO microparticles showed high purity and perfect crystallinity, and hexagonal rod shapes (width 5.0 μm × length 15.0 μm) were seen in the powdered particles. ZnO microparticles (0.5 M) were dissolved in 4.0 M LiOH, NaOH, and KOH alkaline electrolytes in order to evaluate their electrochemical properties. The cyclic voltammetry (CV) curves revealed that the micro-sized hexagonal ZnO rods dissolved in KOH electrolyte exhibited superior electrochemical activity to those dissolved in LiOH and NaOH electrolytes. The micro-sized hexagonal ZnO rods in KOH electrolyte showed a significantly improved cycle stability until the 100th cycle, and reached a discharge capacity of 143.6 mA h g-1, an efficiency of 86%, and a discharge voltage of 1.72 V at a current density of 30 mA cm-2. Moreover, during repeated charging-discharging cycles, the growth of zinc dendrites was suppressed, resulting in improved cycle stability in Ni/Zn redox batteries.
- Liu J, Wang Y, J. Power Sources, 294, 574 (2015)
- Long W, Yang ZH, Fan XM, Yang B, Zhao ZY, Jing J, Electrochim. Acta, 105, 40 (2013)
- Geng M, Northwood DO, Int. J. Hydrog. Energy, 28(6), 633 (2003)
- Lee SH, Yi CW, Kim K, J. Phys. Chem. C, 115, 2572 (2011)
- Zhang L, Huang H, Zhang WK, Gan YP, Wang CT, Electrochim. Acta, 53(16), 5386 (2008)
- Wang RJ, Yang ZH, Yang B, Wang TT, Chu ZH, J. Power Sources, 251, 344 (2014)
- Yu JX, Yang HX, Ai XP, Zhu XM, J. Power Sources, 103(1), 93 (2001)
- Wu JZ, Tu JP, Yuan YF, Ma M, Wang XL, Zhang L, Li RL, Zhang J, J. Alloy. Compd., 479, 624 (2009)
- Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP, Electrochim. Acta, 54(10), 2851 (2009)
- Ma M, Tu JP, Yuan YF, Wang XL, Li KF, Mao F, Zeng ZY, J. Power Sources, 179(1), 395 (2008)
- Huang JH, Yang ZH, Wang TT, Electrochim. Acta, 123, 278 (2014)
- Lee J, Chae J, Kim S, Kim DY, Park N, Kang M, J. Ind. Eng. Chem., 16(2), 185 (2010)
- Yuan YF, Tu JP, Wu HM, Zhang B, Huang XH, Zhao XB, Electrochem. Commun., 8, 653 (2006)
- Wen RJ, Yang ZH, Fan XM, Tan ZY, Yang B, Electrochim. Acta, 83, 376 (2012)
- Yang JL, Yuan YF, Wu HM, Li Y, Chen YB, Guo SY, Electrochim. Acta, 55(23), 7050 (2010)
- Xu M, Ivey DG, Xie Z, Qu W, J. Power Sources, 283, 358 (2015)
- Wu XW, Li YH, Li CC, He ZX, Xiang YH, Xiong LZ, Chen D, Yu Y, Sun K, He ZQ, Chen P, J. Power Sources, 300, 453 (2015)
- Vigneresse JL, Chem. Geol., 263, 69 (2009)
- Shin K, Jung K, Yoon S, Yeon S, Shim J, Joen J, Jin C, Kim Y, Park K, Jeong S, Trans. Korean Hydrogen New Energy Soc., 23, 390 (2012)
- Mir N, Rakhshanipour M, Heidari A, Mir AA, Salavati-Niasari M, J. Ind. Eng. Chem., 21, 884 (2015)
- Kwak BS, Kim DY, Park SS, Kim BS, Kang M, Chem. Eng. J., 281, 368 (2015)
- Chung J, Moon H, Bhang SH, Kim WS, Bong KW, Yu T, J. Ind. Eng. Chem., 36, 59 (2016)
- Xu L, Hu YL, Pelligra C, Chen CH, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib SL, Chem. Mater., 21, 2875 (2009)
- Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mater., 117, 75 (2009)
- Zhang Z, Yang ZH, Wang RJ, Feng ZB, Xie XE, Liao QF, Electrochim. Acta, 134, 287 (2014)
- Zhang Z, Yang ZH, Huang JH, Feng ZB, Xie XE, Electrochim. Acta, 155, 61 (2015)
- Li GR, Lu XH, Qu DL, Yao CZ, Zheng F, Bu Q, Dawa CR, Tong YX, J. Phys. Chem. C, 111, 6678 (2007)
- Kwak BS, Kim DY, Park SS, Kim BS, Kang M, Chem. Eng. J., 281, 368 (2015)