Korean Journal of Materials Research, Vol.26, No.11, 635-643, November, 2016
나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용
Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane
E-mail:
Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped Si/SiO2 substrate. Consequently, we observed an enhancement of the performance of the GNRtransistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.
- ITRS, “International technology roadmap for semiconductors, LITHOGRAPHY” (2003).
- Weste NHE, Eshraghian K, Principles of CMOS Design, 144, Addison Wesley (1993).
- Chou SY, Krauss PR, Renstrom PJ, Appl. Phys. Lett., 67, 3114 (1995)
- Chou SY, Krauss PR, Renstrom PJ, J. Vac. Sci. Technol. B, 14(6), 4129 (1996)
- Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenvasan SV, Ekertdt J, Willson CG, Proc. SPIE-Int. Soc. Opt. Eng., 3679, 379 (1999)
- Chou SY, Krauss PR, Renstrom PJ, J. Vac. Sci. Technol. B, 14(6), 4129 (1996)
- Stewart MD, Johnson SC, Sreenivasan SV, Resnick DJ, Willson DJ, J. Microlith. Microfab. Microsyst., 4, 011002 (2005)
- Chou SY, Krauss PR, Renstrom PJ, Appl. Phys. Lett., 67, 3114 (1995)
- Zhang W, Chou SY, Appl. Phys. Lett., 83, 1632 (2003)
- Chou SY, Krauss PR, Renstrom PJ, Science, 272(5258), 85 (1996)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature, 438, 197 (2005)
- Zhang Y, Tan YW, Stormer HL, Kim P, Nature, 438, 201 (2005)
- Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL, Solid State Commun., 146, 351 (2008)
- Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK, Phys. Rev. Lett., 100, 016602 (2008)
- Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
- Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
- Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK, Science, 320, 1308 (2008)
- Han MY, Ozyilmaz B, Zhang YB, Kim P, Phys. Rev. Lett., 98, 206805 (2007)
- Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H, Phys. Rev. Lett., 100, 20 (2008)
- Jiao L, Zhang L, Ding L, Liu J, Dai H, Nano Res., 3, 6 (2010)
- Li X, Wang X, Zhang L, Lee SW, Dai H, Science, 319, 5867 (2008)
- Kang SH, Hwang WS, Lin Z, Kwon SH, Hong SW, Nano Lett., 15, 7913 (2015)
- Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
- Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
- Han MY, Ozyilmaz B, Zhang Y, Kim P, Phys. Rev. Lett., 98, 206805 (2007)
- Kim HS, Won SM, Ha YG, Ahn JH, Facchetti A, Marks TJ, Rogers JA, Appl. Phys. Lett., 95, 183504 (2009)
- Hong SW, Du F, Lan W, Kim S, Kim HS, Rogers JA, Adv. Mater., 23(33), 3821 (2011)