화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.11, 635-643, November, 2016
나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용
Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane
E-mail:
Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped Si/SiO2 substrate. Consequently, we observed an enhancement of the performance of the GNRtransistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.
  1. ITRS, “International technology roadmap for semiconductors, LITHOGRAPHY” (2003).
  2. Weste NHE, Eshraghian K, Principles of CMOS Design, 144, Addison Wesley (1993).
  3. Chou SY, Krauss PR, Renstrom PJ, Appl. Phys. Lett., 67, 3114 (1995)
  4. Chou SY, Krauss PR, Renstrom PJ, J. Vac. Sci. Technol. B, 14(6), 4129 (1996)
  5. Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenvasan SV, Ekertdt J, Willson CG, Proc. SPIE-Int. Soc. Opt. Eng., 3679, 379 (1999)
  6. Chou SY, Krauss PR, Renstrom PJ, J. Vac. Sci. Technol. B, 14(6), 4129 (1996)
  7. Stewart MD, Johnson SC, Sreenivasan SV, Resnick DJ, Willson DJ, J. Microlith. Microfab. Microsyst., 4, 011002 (2005)
  8. Chou SY, Krauss PR, Renstrom PJ, Appl. Phys. Lett., 67, 3114 (1995)
  9. Zhang W, Chou SY, Appl. Phys. Lett., 83, 1632 (2003)
  10. Chou SY, Krauss PR, Renstrom PJ, Science, 272(5258), 85 (1996)
  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  12. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature, 438, 197 (2005)
  14. Zhang Y, Tan YW, Stormer HL, Kim P, Nature, 438, 201 (2005)
  15. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL, Solid State Commun., 146, 351 (2008)
  16. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK, Phys. Rev. Lett., 100, 016602 (2008)
  17. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  18. Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
  19. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK, Science, 320, 1308 (2008)
  20. Han MY, Ozyilmaz B, Zhang YB, Kim P, Phys. Rev. Lett., 98, 206805 (2007)
  21. Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H, Phys. Rev. Lett., 100, 20 (2008)
  22. Jiao L, Zhang L, Ding L, Liu J, Dai H, Nano Res., 3, 6 (2010)
  23. Li X, Wang X, Zhang L, Lee SW, Dai H, Science, 319, 5867 (2008)
  24. Kang SH, Hwang WS, Lin Z, Kwon SH, Hong SW, Nano Lett., 15, 7913 (2015)
  25. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
  26. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30 (2009)
  27. Han MY, Ozyilmaz B, Zhang Y, Kim P, Phys. Rev. Lett., 98, 206805 (2007)
  28. Kim HS, Won SM, Ha YG, Ahn JH, Facchetti A, Marks TJ, Rogers JA, Appl. Phys. Lett., 95, 183504 (2009)
  29. Hong SW, Du F, Lan W, Kim S, Kim HS, Rogers JA, Adv. Mater., 23(33), 3821 (2011)