화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.10, 535-541, October, 2016
변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향
Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates
E-mail:
The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.
  1. Irvine KJ, Pickering FB, Gladman T, J. Iron Steel Inst., 205, 161 (1967)
  2. Irvine KJ, Gladman T, Orr J, Pickering FB, J. Iron Steel Inst., 208, 717 (1970)
  3. Gladman T, Dulieu D, Met. Sci., 8, 167 (1974)
  4. Kwon O, Lee KJ, J. Korean Inst. Met. Mater., 36, 1866 (1998)
  5. Zhao B, Zhao T, Li G, Lu Q, Met. Mater. Int., 21, 692 (2015)
  6. Tao X, Li C, Han L, Gu J, Met. Mater. Int., 21, 440 (2015)
  7. Lsasti N, Jorge-Badiola D, Taheri LM, Uranga P, Met. Mater. Int., 20, 807 (2014)
  8. Shukla R, Ghosh SK, Chakrabarti D, Chatterjee S, Met. Mater. Int., 21, 85 (2015)
  9. Gladman T, McIvor ID, Pickering FB, J. Iron Steel Inst., 209, 380 (1971)
  10. Jonas JJ, Weiss I, Met. Sci., 13, 238 (1979)
  11. Chandra T, Weiss I, Jonas JJ, Met. Sci., 16, 97 (1982)
  12. Cho SH, Kang KB, Jonas JJ, ISIJ Int., 41, 63 (2001)
  13. Simielli EA, Yue S, Jonas JJ, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 23, 597 (1992)
  14. Akben MG, Bacroix B, Jonas JJ, Acta Metall., 31, 161 (1983)
  15. Luton MJ, Dorvel R, Petkovic RA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 11, 411 (1980)
  16. Radis R, Kozeschnik E, Model. Simul. Mater. Sci. Eng., 18, 055003 (2010)
  17. Gunduz S, Cochrane RC, Mater. Des., 26, 486 (2005)
  18. Boratto F, Barbosa R, Yue S, Jonas JJ, International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, THERMEC-88, 1, 383 (1988).
  19. Zener C, Holloman JH, J. Appl. Phys., 15, 22 (1944)
  20. Gladman T, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 294, 298 (1966)
  21. Kang KB, Kwon O, Lee WB, Park CG, Scripta Meter., 36, 1303 (1997)
  22. Hansen SS, Sande JBV, Cohen M, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 11, 387 (1980)
  23. McQueen HJ, Jonas JJ, Treatise on Materials Science and Technology, 6, 393 (1975)
  24. Cho SH, Oh MS, So CY, Yoo YC, J. Korean Inst. Met. Mater., 33, 544 (1995)
  25. Eghbali B, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 3402 (2010)
  26. Weiss I, Jonas JJ, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 10, 831 (1979)
  27. Tamura I, Sekine H, Tanaka T, Ouchi C, Thermomechanical Processing of High-Strength Low-Alloy Steels, p.154, Butterworth & Co., Ltd., London, (1988).
  28. Kwon O, DeArdo AJ, Acta Metall. Mater., 39, 529 (1991)
  29. Choi JK, Seo DH, Lee JS, Um KK, Choo WY, ISIJ Int., 43, 746 (2003)
  30. Lee SW, Seo DH, Choo WY, J. Korean Inst. Met. Mater., 36, 1966 (1998)
  31. Eghbali B, Abdollah-Zadeh A, Mater. Des., 28, 1021 (2007)