Macromolecular Research, Vol.24, No.10, 900-908, October, 2016
In Situ Polymerized Poly(butylene succinate-co-ethylene terephthalate)/Hydroxyapatite Nanocomposite with Adjusted Thermal, Mechanical and Hydrolytic Degradation Properties
E-mail:
New nanocomposites of poly(butylene succinate-co-ethylene terephthalate)/nano hydroxyapatite were synthesized using two-step in situ polycondensation. The composition, microstructure, morphology and dispersion of nanoparticles in the nanocomposites were studied using proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that presence of nano hydroxyapatite catalyzes the reaction and there is a chemical bond between nanoparticles and polymer which leads to a good particle dispersion but it doesn’t affect molecular sequence length. Nanocomposites’ thermal properties evaluated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD), showed that crystallinity and crystallite size slightly decrease with the nanoparticles weight fraction. Moreover, the elastic modulus slightly increases and tensile strength and elongation at break decrease with the nanoparticles weight fraction according to dynamic mechanical thermal analysis (DMTA) and tensile analysis. Introducing nano hydroxyapatite increases the hydrolytic degradability dramatically because of the presence of hydrophilic nanoparticle and lower crystallite size.
Keywords:copolyester;nanocomposite;poly(butylene succinate-co-ethylene terephthalate);nano hydroxyapatite;degradability
- Phua YJ, Lau NS, Sudesh K, Chow WS, Ishak ZM, J. Compos. Mater., 49, 891 (2015)
- Li X, Qiu Z, Macromol. Res., 23(7), 678 (2015)
- Sung Y, Kim TH, Lee B, Macromol. Res., 24(2), 143 (2016)
- Huang Y, Niu X, Wang L, Li X, Zhou G, Feng Q, Fan J, Fan Y, J. Compos. Mater., 48, 1971 (2014)
- Koo AN, Ohe JY, Lee DW, Chun J, Lee HJ, Kwon YD, Lee SC, Macromol. Res., 23(12), 1168 (2015)
- Zhan S, Wang J, Qi Q, Li M, Wang W, Ding S, Chen S, J. Polym. Res., 22, 161 (2015)
- Laycock B, Halley P, Pratt S, Werker A, Lant P, Prog. Polym. Sci, 38, 536 (2013)
- Kim YJ, Kang GD, Yoon KC, Hwang Y, Park OO, Macromol. Res., 23(10), 887 (2015)
- Bikiaris DN, Achilias DS, Polymer, 49(17), 3677 (2008)
- Eshaq GH, ElMetwally AE, J. Mol. Liq., 214, 1 (2016)
- Li SL, Wu F, Yang Y, Wang YZ, Zeng JB, Polym. Adv. Technol., 26, 1003 (2015)
- Shirali H, Rafizadeh M, Taromi FA, Macromol. Res., 23(8), 755 (2015)
- Harms C, Helms K, Taschner T, Stratos I, Ignatius A, Gerber T, Lenz S, Rammelt S, Vollmar B, Mittlmeier T, Int. J. Nanomed., 7, 2883 (2012)
- Dadbin S, Naimian F, Polym. Int., 63, 1063 (2014)
- Xing ZC, Han SJ, Shin YS, Kang IK, J. Nanomater., 2011 (2011)
- Kricheldorf HR, Chem. Rev., 109(11), 5579 (2009)
- Gross RA, Ganesh M, Lu W, Trends Biotechnol., 28, 435 (2010)
- Fan RR, Zhou LX, Song W, Li DX, Zhang DM, Zheng Y, Guo G, Ye R, Int. J. Biol. Macromol., 59, 227 (2013)
- Tserki V, Matzinos P, Pavlidou E, Panayiotou C, Polym. Degrad. Stabil., 91, 377 (2006)
- Soccio M, Lotti N, Gigli M, Finelli L, Gazzano M, Munari A, Polym. Int., 61, 1163 (2012)
- Saint-Loup R, Jeamnaire T, Robin JJ, Boutevin B, Polymer, 44(12), 3437 (2003)
- Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS, J. Appl. Polym. Sci., 111(3), 1433 (2009)
- Panda RN, Hsieh MF, Chung RJ, Chin TS, J. Phys. Chem. Solids, 64, 193 (2003)
- Gandhi S, Sethuraman S, Krishnan UM, Macromol. Res., 21(8), 833 (2013)
- Jayaraman A, J. Polym. Sci. B: Polym. Phys., 51(7), 524 (2013)
- Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC, Eur. Polym. J., 43, 1602 (2007)
- Money BK, Hariharan K, Swenson J, J. Phys. Chem. B, 116, 7762 (2012)
- Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS, Nature, 4, 693 (2005)
- Zhang X, Li Y, Lv G, Zuo Y, Mu Y, Polym. Degrad. Stabil., 91, 1202 (2006)
- Nikolic MS, Djonlagic J, Polym. Degrad. Stab., 74, 263 (2001)
- Pang YX, Bao X, J. European Ceram. Soc., 23, 1697 (2003)
- Choi KM, Lim SW, Choi MC, Han DH, Ha CS, Macromol. Res., 22(12), 1312 (2014)
- Khan MR, Mahfuz H, Leventouri T, Rangari VK, Kyriacou A, Polym. Eng. Sci., 51(4), 654 (2011)
- Hoyo-Gallego SD, Perez-Alvarez L, Gomez-Galvan F, Lizundia E, Kuritka I, Sedlarik V, Laza JM, Vila-Vilela JL, Carbohydr. Polym., 143, 35 (2016)
- Bahader A, Gui H, Li Y, Xu P, Ding Y, Macromol. Res., 23(3), 273 (2015)
- Sheikholeslami SN, Rafizadeh M, Taromi FA, Bouhendi H, J. Thermoplast. Compos., 27, 1530 (2014)
- Saeed HAM, Eltahir YA, Xia YM, Wang YM, Polym. Bull., 71(3), 595 (2014)
- Menczel JD, Prime RB, in Thermal Analysis of Polymers:Fundamentals and Applications, Wiley, 2009, Chap. 2.
- Shirali H, Rafizadeh M, Taromi FA, J. Compos. Mater., 48, 301 (2014)
- Deng X, Hao J, Wang C, Biomaterials, 22, 2867 (2001)
- Srithep Y, Nealey P, Turng LS, Polym. Eng. Sci., 53(3), 580 (2013)
- Sheikholeslami SN, Rafizadeh M, Taromi FA, Shirali H, Jabbari E, Polymer, 98, 70 (2016)
- Barati D, Moeinzadeh S, Karaman O, Jabbari E, Polymer, 55(16), 3894 (2014)