화학공학소재연구정보센터
Macromolecular Research, Vol.24, No.2, 143-151, February, 2016
Syntheses of carboxymethylcellulose/graphene nanocomposite superabsorbent hydrogels with improved gel properties using electron beam radiation
E-mail:
Nanocomposite superabsorbent hydrogels (NCSHs) were prepared via electron beam radiation-assisted polymerization using carboxymethylcellulose (CMC) and carbon materials as a superabsorbent polymer and additive inorganic nanomaterial, respectively. Carbon materials such as graphite oxide (GO), reduced graphene oxide (rGO), and activated carbon (AC) were used as additives. The chemical structure and morphology of the prepared NCSHs and pure superabsorbent hydrogels (SHs) were characterized using Fourier transform infrared spectroscopy and optical microscopy. In the prepared NCSHs, the carbon components were dispersed well in the CMC polymer matrix. The mechanical strength and gel fraction of the prepared materials were measured, and the swelling kinetics were evaluated using distilled water, urea solution, and physiological saline water. The prepared NCSHs using GO and rGO exhibited larger gel fraction and mechanical strength than the corresponding non-composite SHs. Electron beam radiation was more effective than solution polymerization in the syntheses of SHs and NCSHs with large gel fraction and high mechanical strength. The NCSHs prepared by electron beam radiation exhibited comparable swelling capabilities to those prepared by solution polymerization.
  1. 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (as amended in 2006).
  2. Zohuriaan-Mehr MJ, Kabiri K, Iran. Polym. J., 17, 451 (2008)
  3. Po R, J. Macromol. Sci. C, C34, 607 (1994)
  4. Salmawi KME, Ibrahim SM, Macromol. Res., 19(10), 1029 (2011)
  5. Raafat AI, Eid M, El-Arnaouty MB, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 283, 71 (2012)
  6. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S, Polym. Compos., 32, 277 (2011)
  7. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  8. Qiu J, Xu L, Peng J, Zhai M, Zhao L, Li J, Wei G, Carbohydr. Polym., 70, 236 (2007)
  9. Ma X, Li Y, Wang W, Ji Q, Xia Y, Eur. Polym. J., 49, 389 (2013)
  10. Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q, Colloids Surf. A: Physicochem. Eng. Asp., 401, 97 (2012)
  11. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  12. Geim AK, Science, 324, 1530 (2009)
  13. Fei I, Wach RA, Mitomo H, Yoshii F, Kume T, J. Appl. Polym. Sci., 78(2), 278 (2000)
  14. Chang C, Duan B, Cai J, Zhang L, Eur. Polym. J., 46, 92 (2010)
  15. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
  16. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
  17. Kwon J, Lee B, Chem. Eng. Res. Des., 104, 519 (2015)
  18. Katime I, Alvarez-Bautista A, Guerrero-Ramirez LG, Mendizabal E, Topol. Supramol. Polym. Sci., 1, 17 (2014)
  19. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK, Phys. Rev. Lett., 97, 187401 (2006)
  20. Lee YJ, Kim GP, Bang Y, Yi J, Seo JG, Song IK, Mater. Res. Bull., 50, 240 (2014)
  21. El-Din HMN, Alla SGA, El-Naggar AWM, Radiat. Phys. Chem., 79, 725 (2010)
  22. Wach RA, Mitomo H, Yoshii F, Kume T, J. Appl. Polym. Sci., 81(12), 3030 (2001)