화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.2, 197-203, March, 1999
백금촉매에 의한 PCS-co-MPS 세라믹 전구체의 합성과 열분해 특성
Synthesis of PCS-co-MPS Ceramic Precursor with Platinum Catalyst and Its Pyrolysis
초록
백금촉매를 이요한 hydrosilylation 반응에 의해 높은 수율의 세라믹 전구체를 얻기 위해서 polycarbosilane-co-methacryloxypropyltrimethoxy silane (PCS-CO-MPS)을 합성하였다. 합성한 시료의 FT-IR 스펙트럼에서 2100, 1720, 1640, 1170, ⅰ130 cm-1 부근에서의 흡수 피크 변화와 ¹H-NMR의 4.1, 3.5, 1.8 ppm 부근에서 특성 피크를 확인해 시료의 합성을 확인하였다. 또한 1500 ℃까지 열분해시킨 후 29Si-NMR 분석결과 δ=-60, -109 ppm 부근에서 특성 피크와 X-ray회절 분석결과 2θ=34, 61, 78°에서 결정성 피크로 β-SiC의 전환을 확인하였고, PCS-co-MPS의 열분해 전환율은 87,5%로 PCS에 비해 18.2%가 증가함을 보였다.
In order to increase the yield of the ceramic precursors, copolymers of polycarbosilane(PCS) and γ-methacryloxypropyltrimethoxy silane (γ-MPS) were synthesized by hydrosilylation with platinum catalyst. The structures of PCS-co-MPS ceramic precursors were investigated by using FT-IR and 1H-NMR spectrometers. The syntheses of ceramic precursors were confirmed by monitoring the change of the absorption bands appearing at 2100, 1720, 1640, 1170, 1130 cm-1 on the FT-IR spectra. The syntheses of eramic precursors were also confirmed by the presence of peaks at 4.1, 3.5, 1.8 ppm on the 1 H-NMR spectra. The conversion of PCS-co-MPS copolymers was around 87.5% and 18.2% higher than that of the pure PCS. After the heat-treatment at 1500 ℃, the crystalline peaks for β-Sic were observed at-60, -109, ppm on the29 Si-NMR spectra, and at 2θ=35°, 59° and 71° on the X-ray spectra, respectively. It showed the conversion of ceramic precursors to crystalline β-SiC.
  1. Hasegawa Y, Okamura K, J. Mater. Sci. Lett., 4, 356 (1985) 
  2. Yajima S, Hayashi J, Omori M, Chem. Lett., 931, 931 (1975) 
  3. Yajima S, Okamura K, Hayashi J, Omori M, J. Am. Ceram. Soc., 59, 324 (1976) 
  4. Hasegawa Y, Iimura M, Yjima S, J. Mater. Sci., 15, 720 (1980) 
  5. Okave Y, Hejo J, Kato A, J. Less. Commun. Mater., 68, 29 (1979) 
  6. Hirai T, Goto T, Ksji T, Yogyo Kyokai Shi, 91, 502 (1983)
  7. Hase T, Suzuki M, Yogyo Kyokai Shi, 68, 541 (1978)
  8. Hasegawa Y, Okamura K, J. Mater. Sci., 18, 3633 (1983) 
  9. Yajima S, Hasegawa Y, Hayashi J, Imura M, J. Mater. Sci., 13, 2569 (1978) 
  10. Hasegawa Y, Imura M, Yajima S, J. Mater. Sci., 15, 720 (1980) 
  11. Hwang TS, Lim JH, Woo HG, Polym.(Korea), 22(2), 194 (1998)
  12. Hwang TS, Polym.(Korea), 22(5), 708 (1998)
  13. Bacque E, Pillat JP, Birot M, Dunogues J, Macromolecules, 21, 34 (1988) 
  14. Ganicz T, Stanczyk W, Bialeckaflorjanczyk E, Sledzinska I, Polymer, 37(18), 4167 (1996) 
  15. Fritz G, Grobe J, Kummer D, Adv. Inorg. Chem. Radiochem., 7, 349 (1965)
  16. Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, J. Mater. Sci., 26, 1333 (1991) 
  17. Martin HP, Muller E, Richter R, Roewer G, Brendler E, J. Mater. Sci., 32(5), 1381 (1997) 
  18. Narisawa M, Shimoda M, Okamura K, Sugimoto M, Seguchi T, Bull. Chem. Soc. Jpn., 68(4), 1098 (1995)