화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.2, 194-200, March, 1998
백금촉매를 이용한 Modified Polycarbosilane 세라믹 전구체의 합성과 열분해 특성에 관한 연구
The Study on the Synthesis and Their Thermal Degradation Properties of Modified Polycarbosilane Preceramics with Platinum Catalyst
초록
백금촉매를 이용한 hydrosilylation 반응에 의해 difunctional group을 갖는 새로운 세라믹 고분자 전구체를 합성하기 위하여 polycarbosilane (PCS )-dichloromethylvinylsilane (DMVS)공중합체를 합성하였다. 합성한 공중합체의 FT-IR 스펙트럼 결과 3050, 2100, 1600, 480cm-1부근에서 피크 변화와 1H-NMR 및 13C-NMR 스펙트럼의 δ=3.0, 4.5, 5.9 ppm과 δ=130, 62ppm 부근에서 DMVS의 비닐기 (CH2=CH-)에 의한 특성 피크로부터 공중합체의 합성을 확인하였다. 또한 초기 열분해 온도와 열중량 변화 및 분자량 변화를 알아보기 위한 열중량 분석과 GPC 측정결과 촉매량이 0.3 wt%일 때 열분해 초기온도가 483℃로 중량감소는 20wt%로 가장 낮았으며 순수한 PCS의 그것에 비해 중량감소율이 현저히 낮아졌다.
New ceramic precursors, copolymers of polycarbosilane (PCS) and dichloromethyvinylsilane (DMVS), were synthesized by hydrosilylation with platinum catalyst. The structure of PCS-DMVS copolymers were investigated by using FT-IR and NMR spectrometers. The syntheses of PCS-DMVS copolymers were confirmed by monitoring the change of the absorption bands appearing at 3050, 2100, 1600, 480 cm-1 on the FT-IR spectra. The syntheses of copolymers were also confirmed by the presence of peaks at 3.0, 4.5, 5.9 ppm on the 1H-NMR spectra and at 62 and 130 ppm on the l3C-NMR spectra, which are the characteristic peaks of vinyl group of DMVS. The initial thermal degradation temperature, weight loss and molecular weight of PCS-DMVS copolymers were analysed by thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The initial thermal degradation temperature of PCS-DMVS copolymer was 483℃. The total weight loss was PCS-DMVS copolymer 20 wt% and significantly decreased comparing with pure PCS at the same degradation condition.
  1. Mark JE, Allock HR, West R, "Inorganic Polymers," Chapter 1, Academic Press, New York (1990)
  2. Allcock HR, Lampe FW, "Contemporary Polymer Chemistry," 2nd ed., Prentice Hall, New Jersey (1992)
  3. Laine RM, Babonneau F, Chem. Mater., 5, 260 (1993) 
  4. Wynne KJ, Rice RW, Mater. Sci., 14, 297 (1984)
  5. Zelden M, Wynne KJ, Allcock HR, "Inorganic and Organometallic Polymers: Macromolecules Containing Silicon, Phosphous and other Inorganic Elements," ACS Symp. Ser. 360, Am. Chem. Soc. Washington, D.C. (1988)
  6. Laine RM, "Inorganic and Organometallic Polymers with Special Properties," NATO ASI Ser. E. Applied Sciences, Vol. 206, Kluwer Academic Publishers (1992)
  7. Mark JE, Allcock HR, West R, "Inorganic Polymer," Prentice-Hall, Inc. (1992)
  8. Sawyer LC, Jamieson M, Brikowski D, Haider MI, Chen RT, J. Am. Ceram. Soc., 70, 798 (1987) 
  9. West R, Hench LL, Ulrich DR, "Ultrastructure Processing and Ceramic, Classes and Composites," p. 235, John Wiley & Sons, New York (1984)
  10. Okamura K, Sato M, Hasegawa Y, J. Mater. Sci. Lett., 2, 1769 (1983)
  11. Ichikawa H, Machino R, Mitsuno S, Ishikawa T, J. Mater. Sci., 21, 4352 (1986) 
  12. Okabe Y, Hejo J, Kato A, Less J, Commun. Mater., 68, 29 (1979)
  13. Liao CX, Weber WP, Macromolecules, 26, 563 (1993) 
  14. Uhlig W, J. Polym. Sci. A: Polym. Chem., 33(2), 239 (1995) 
  15. Bruno B, Corriu Robert JP, Hubert Mutin LP, Jean-Marc DP, Andre V, Organometallics, 10, 1457 (1991) 
  16. Chalk AJ, Harrod JF, J. Am. Chem. Soc., 87, 16 (1965) 
  17. Yajima S, Hasegawa Y, Hayashi J, Ilmura M, J. Mater. Sci., 13, 2569 (1978)