화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.41, 151-157, September, 2016
Adsorption performance of SO2 over ZnAl2O4 nanospheres
E-mail:,
A type of uniform ZnAl2O4 nanospheres was selectively synthesized via a facile solvothermalmethod and their size was controlled to be 320-450 nm in diameter. It exhibits excellent SO2 adsorption capacity. Both physical structure and surface basicity were determined to play important roles in SO2 adsorption process. In situ FTIR investigation revealed that adsorbed SO2 molecules formed surface bisulfite, sulfite, and bidentate binuclear sulfate. The CO2-TPD results revealed the SO2 adsorption capacity of the catalysts correlated closely with their basicity sites. The mechanisms for SO2 adsorption and transformation have been discussed in detail.
  1. Sanchez-Cantu M, Perez-Diaz LM, Maubert AM, Valente JS, Catal. Today, 150(3-4), 332 (2010)
  2. Kong JC, Jiang L, Huo ZP, Xu XY, Evans DG, Song JQ, He MY, Li ZF, Wang Q, Yan JLJ, Catal. Commun., 40, 59 (2013)
  3. Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M, Fuel Process. Technol., 114, 81 (2013)
  4. Zawadzki M, Wrzyszcz J, Mater. Res. Bull., 35(1), 109 (2000)
  5. Edelstein A, Cammarata RC, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia, 1996.
  6. Van der Laag NJ, Snel MD, Magustin PCMM, de With G, J. European Ceram. Soc., 24, 2417 (2004)
  7. Phani AR, Passacantando M, Santucci S, Mater. Chem. Phys., 68(1-3), 66 (2001)
  8. Flura A, Can F, Courtois X, Royer S, Duprez D, Appl. Catal. B: Environ., 126, 275 (2012)
  9. Alves CT, Oliveira A, Carneiro SAV, Silva AG, Andrade HMC, de Melo SABV, Torres EA, Fuel Process. Technol., 106, 102 (2013)
  10. Ianos R, Lazau R, Lazau I, Pacurariu C, J. European Ceram. Soc., 32, 1605 (2012)
  11. Coq B, Figueras F, Coord. Chem. Rev., 178-180, 17533 (1998)
  12. Redel E, Petrov S, Dag O, Moir J, Huai C, Mirtchev P, Ozin GA, Small, 8, 68 (2011)
  13. Lee DW, Yoo BR, J. Ind. Eng. Chem., 20(6), 3947 (2014)
  14. Zawadzki M, Solid State Sci., 8, 14 (2006)
  15. Wei X, Chen D, Mater. Lett., 60, 823 (2006)
  16. Valenzuela MA, Jacobs JP, Bosch P, Reijne S, Zapata B, Brongersma HH, Appl. Catal. A: Gen., 148(2), 315 (1997)
  17. Zhao L, Li XY, Hao C, Rastonb CL, Appl. Catal. B: Environ., 117-118, 339 (2012)
  18. Farhadi S, Panahandehjoo S, Appl. Catal. A: Gen., 382(2), 293 (2010)
  19. Cullity BD, Stock SR, Elements of X-ray Diffraction, third ed., Prentice-Hall, Englewood Cliffs, NJ, 2001.
  20. Barahuie F, Hussein MZ, Arulselvan P, Fakurazi S, Zainal Z, J. Solid State Chem., 217, 31 (2014)
  21. Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R, J. Electron Spectrosc. Relat. Phenom., 88-91, 951 (1998)
  22. Lojewska J, Kolodziej A, Dynarowicz-Latka P, Weselucha-Birczynska A, Catal. Today, 101(2), 81 (2005)
  23. Zawadzki M, Staszak W, Lopez-Suarez FE, Illan-Gomez MJ, Bueno-Lopez A, Appl. Catal. A: Gen., 371(1-2), 92 (2009)
  24. Wu Q, Gao HW, He H, J. Phys. Chem. B, 110(16), 8320 (2006)
  25. Karge HG, Lana IGD, J. Phys. Chem., 88, 1538 (1984)
  26. Pacchioni G, Clotet A, Ricart JM, Surf. Sci., 315, 337 (1994)
  27. Davydov Y, Khoshnevisan D, Shi Z, Zitikis R, J. Stat. Plan. Infer., 137, 915 (2007)
  28. Xu WQ, He H, Yu YB, J. Phys. Chem. C, 113, 4426 (2009)
  29. Ma QX, Liu YC, He H, J. Phys. Chem. A, 112(29), 6630 (2008)
  30. Overbury SH, Mullins DR, Huntley DR, Kundakovic L, J. Phys. Chem. B, 103(51), 11308 (1999)
  31. Schoonheydt RA, Lunsford JH, J. Catal., 26, 261 (1972)
  32. John MHL, Tom Z, Peter DC, J. Phys. Chem. C, 114, 10444 (2010)
  33. Goodman AL, Li P, Usher CR, Grassian VH, J. Phys. Chem. A, 105(25), 6109 (2001)
  34. Martin MA, Childers JW, Palmer RA, Appl. Spectrosc., 41, 120 (1987)
  35. Lee Y, Park J, Environ. Sci. Technol., 36, 1086 (2002)
  36. Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.
  37. Zhang XY, Zhuang GS, Chen JM, Wang Y, Wang X, An ZS, Zhang P, J. Phys. Chem. B, 110(25), 12588 (2006)