화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.39, 149-152, July, 2016
Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation
E-mail:
Polyvinylidine fluoride (PVDF) hollow fiber membranes were employed to enhance mass transfer rate of methane in water for the fermentation of Methylosinus trichosporium OB3b. Compared to common alumina bubbler, hollow fiber membrane modules (HFMMs) afforded smaller methane bubble size and larger methane.water volumetric mass transfer coefficient (kLa) as high as 150.1 h-1. Furthermore, cell growth rate and maximum optical density of M. trichosporium OB3b were increased by 67.3 and 77.4%, respectively, by adapting forty HFMMs, compared to those of alumina bubbler.
  1. Jinchuan Z, Zhijun J, Mingsheng Y, Nat. Gas Ind. B, 24, 15 (2004)
  2. Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I, Environ. Sci. Technol., 46, 619 (2011)
  3. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977 (2013)
  4. Haynes CA, Gonzalez R, Nat. Chem. Biol., 10, 331 (2014)
  5. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
  6. Arjunwadkar S, Sarvanan K, Kulkarni P, Pandit A, Biochem. Eng. J., 1, 99 (1998)
  7. Ungerman AJ, Heindel TJ, Biotechnol. Prog., 23(3), 613 (2007)
  8. Beenackers A, Van Swaaij W, Chem. Eng. Sci., 48, 3109 (1993)
  9. Chang IS, Kim BH, Lovitt RW, Bang JS, Process Biochem., 37(4), 411 (2001)
  10. Painmanakul P, Wachirasak J, Jamnongwong M, Hebrard G, Eng. J., 13, 13 (2009)
  11. Akita K, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 13, 84 (1974)
  12. Zhu HY, Shanks BH, Heindel TJ, Ind. Eng. Chem. Res., 47(20), 7881 (2008)
  13. Lee J, Kim K, Chang IS, Kim MG, Ha KS, Lee EY, Lee J, Kim C, J. Mol. Liq., 215, 154 (2016)
  14. Kadic E, Heindel TJ, An Introduction to Bioreactor Hydrodynamics and Gas-liquid Mass Transfer, John Wiley & Sons, 2014.
  15. Kim K, Lee J, Seo K, Kim MG, Ha KS, Kim C, J. Ind. Eng. Chem., 33, 326 (2016)
  16. Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY, J. Microbiol. Biotechnol., 25, 375 (2015)
  17. Martin M, Montes FJ, Galan MA, Chem. Eng. Sci., 63(12), 3212 (2008)
  18. Yasin M, Park S, Jeong Y, Lee EY, Lee J, Chang IS, Bioresour. Technol., 169, 637 (2014)
  19. Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 1 (2015)
  20. Lee J, Foster N, Appl. Catal., 63, 1 (1990)
  21. Whittenbury R, Phillips K, Wilkinson J, Microbiology, 61, 205 (1970)
  22. Wilkinson PM, Haringa H, Vandierendonck LL, Chem. Eng. Sci., 49(9), 1417 (1994)
  23. Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT, J. Membr. Sci., 285(1-2), 272 (2006)
  24. Bouhabila EH, Aim RB, Buisson H, Sep. Purif. Technol., 22-23, 123 (2001)
  25. Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY, J. Microbiol. Biotechnol., 24, 1597 (2014)