화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.2, 87-110, May, 2016
Effect of buoyancy-assisted flow on convection from an isothermal spheroid in power-law fluids
E-mail:
In this work, the coupled momentum and energy equations have been solved to elucidate the effect of aiding-buoyancy on the laminar mixed-convection from a spheroidal particle in power-law media over wide ranges of the pertinent parameters: Richardson number, 0≤Ri≤5; Reynolds number, 1≤Re≤100; Prandtl number, 1≤Pr≤100; power-law index, 0.3≤n≤1.8, and aspect ratio, 0.2≤e≤5 for the case of constant thermo-physical properties. New results for the velocity and temperature fields are discussed in terms of the streamline and isotherm contours, surface pressure and vorticity contours, drag coefficient, local and surface averaged Nusselt number. The effect of particle shape on the flow is seen to be more pronounced in the case of oblates (e < 1) than that for prolates (e > 1). The propensity for wake formation reduces with the rising values of power-law index, Richardson number and slenderness of the body shape (e > 1). Also, the drag coefficient is seen to increase with the Richardson number and power-law index. All else being equal, the Nusselt number shows a positive dependence on the Richardson number and Reynolds number and an inverse dependence on the power-law index and aspect ratio of the spheroid. Limited results were also obtained by considering the exponential temperature dependence of the power-law consistency index. This factor can increase the values of the average Nusselt number by up to ~10-12% with reference to the corresponding values for the case of the constant thermo-physical properties under otherwise identical conditions. Finally, the present values of the Nusselt number have been consolidated in the form of Colburn j-factor as a function of the modified Reynolds and Prandtl numbers for each value of the aspect ratio (e). The effect of the temperature dependent viscosity is included in this correlation in terms of a multiplication factor.
  1. Alassar RS, J. Heat Transf. -Trans. ASME, 127, 1062 (2005)
  2. Alassar RS, Badr HM, J. Eng. Math., 36, 277 (1999)
  3. Bhattacharyya S, Singh A, Int. J. Heat Mass Transf., 51(5-6), 1034 (2008)
  4. Bird RB, Armstrong RC, Hassager O, 1987, Dynamics of Polymeric Liquids: Fluid Dynamics, vol. 1, 2nd ed., Wiley, New York.
  5. Chen TS, Mucoglu A, Int. J. Heat Mass Transf., 20, 867 (1977)
  6. Chhabra RP, 2006, Bubbles, Drops and Particles in Non-Newtonian Fluids, 2nd ed., CRC Press, Boca Raton.
  7. Chhabra RP, Richardson JF, 2008, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed., Butterworth-Heinemann, Oxford.
  8. Clift R, Grace JR, Weber ME, 1978, Bubbles, Drops and Particles, Academic Press, New York.
  9. Dhole SD, Chhabra RP, Eswaran V, AIChE J., 52(11), 3658 (2006)
  10. Eslami M, Jafarpur K, Heat Mass Transf., 48, 301 (2012)
  11. Getachew D, Poulikakos D, Minkowycz WJ, J. Thermophys. Heat Transf., 12, 437 (1998)
  12. Gupta AK, Chhabra RP, Ind. Eng. Chem. Res., 53(49), 18943 (2014)
  13. Gupta AK, Chhabra RP, Int. J. Heat Mass Transf., 93, 803 (2016)
  14. Gupta AK, Sasmal C, Sairamu M, Chhabra RP, Int. J. Heat Mass Transf., 75, 592 (2014)
  15. Jaluria Y, Gebhart B, 1998, Buoyancy-Induced Flows and Transport, Taylor & Francis, New York.
  16. Juncu G, Int. J. Heat Mass Transf., 53(17-18), 3483 (2010)
  17. Kishore N, Ind. Eng. Chem. Res., 51(7), 3186 (2012)
  18. Kishore N, Gu S, Int. J. Heat Mass Transf., 54(11-12), 2595 (2011)
  19. Kishore N, Gu S, Chem. Eng. Technol., 34(9), 1551 (2011)
  20. Kotouc M, Bouchet G, Dusek J, Int. J. Heat Mass Transf., 51(11-12), 2686 (2008)
  21. Kotouc M, Bouchet G, Dusek J, Phys. Fluids, 21, 054104 (2009)
  22. Kreith F, 2000, The CRC Handbook of Thermal Engineering, CRC Press, Boca Raton.
  23. Lee S, Yovanovich MM, Jafarpur K, J. Thermophys. Heat Transf., 5, 208 (1991)
  24. Martynenko OG, Khramstov PP, 2005, Free Convective Heat Transfer, Springer, New York.
  25. Meissner DL, Jeng DR, Dewitts KJ, Int. J. Heat Mass Transf., 37(10), 1475 (1994)
  26. Michaelides EE, Heat Mass Transf. (2006)
  27. Mograbi E, Bar-Ziv E, J. Aerosol Sci., 36(3), 387 (2005)
  28. Mograbi E, Bar-Ziv E, J. Aerosol Sci., 36(9), 1177 (2005)
  29. Molla MM, Yao LS, J. Thermophys. Heat Transf., 22, 762 (2008)
  30. Nirmalkar N, Chhabra RP, Chem. Eng. Sci., 89, 49 (2013)
  31. Nirmalkar N, Chhabra RP, Chem. Eng. Sci., 89, 49 (2013)
  32. Nirmalkar N, Chhabra RP, Chem. Eng. Sci., 140, 359 (2016)
  33. Patel SA, Chhabra RP, J. Thermophys. Heat Transf., 30, 153 (2016)
  34. Peixinho J, Desaubry C, Lebouche M, Int. J. Heat Mass Transf., 51(1-2), 198 (2008)
  35. Prhashanna A, Chhabra RP, Chem. Eng. Sci., 65(23), 6190 (2010)
  36. Raithby GD, Pollard A, Hollands KTG, Yovanovich MM, J. Heat Transf. -Trans. ASME, 98, 452 (1976)
  37. Rathore AS, Chaitanya P, Kishore N, Ind. Eng. Chem. Res., 52(33), 11773 (2013)
  38. Reddy CR, Kishore N, Ind. Eng. Chem. Res., 53(2), 989 (2014)
  39. Roache PJ, 2009, Verification and Validation in Computational Science and Engineering, Hermosa, Albuquerque.
  40. Sasmal C, Chhabra RP, J. Thermophys. Heat Transf., 28, 750 (2014)
  41. Soares AA, Ferreira JM, Caramelo L, Anacleto J, Chhabra RP, Int. J. Heat Mass Transf., 53(21-22), 4728 (2010)
  42. Sreenivasulu B, Srinivas B, Int. J. Therm. Sci., 87, 1 (2015)
  43. Sreenivasulu B, Srinivas B, Ramesh KV, Int. J. Heat Mass Transf., 70, 71 (2014)
  44. Srinivas B, Ramesh KV, CFD Letters, 6, 1 (2014)
  45. Steffe JF, 1996, Rheological Methods in Food Process Engineering, 2nd ed., Freeman Press, East Lansing.
  46. Tripathi A, Chhabra RP, AIChE J., 41(3), 728 (1995)
  47. Tripathi A, Chhabra RP, Sundararajan T, Ind. Eng. Chem. Res., 33(2), 403 (1994)
  48. Yao LS, Molla MM, J. Thermophys. Heat Transf., 22, 758 (2008)