화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.2, 77-86, May, 2016
Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere
E-mail:
For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.
  1. Anna SL, Bontoux N, Stone HA, Appl. Phys. Lett., 82, 364 (2003)
  2. Bently BJ, Leal LG, J. Fluid Mech., 167, 219 (1986)
  3. Bently BJ, Leal LG, J. Fluid Mech., 167, 241 (1986)
  4. Bhunia A, Pais SC, Kamotani Y, Kim IH, AIChE J., 44(7), 1499 (1998)
  5. Bu H, Kjoniksen AL, Elgsaeter A, Nystrom B, Colloids Surf. A: Physicochem. Eng. Asp., 278, 166 (2006)
  6. Eral HB, Lopez-Mejias V, O’Mahony M, Trout BL, Myerson AS, Doyle PS, Cryst. Growth Des., 14, 2073 (2014)
  7. Favelukis M, Lavrenteva OM, Nir A, J. Non-Newton. Fluid Mech., 125(1), 49 (2005)
  8. Goh CH, Heng PWS, Chan LW, Carbohydr. Polym., 88, 1 (2012)
  9. Gulrez SKH, Al-Assaf S, Phillips GO, 2015, Hydrogels: methods of preparation, characterization and application, In: A. Carpi, ed., Progress in Molecular and Environmental Bioengineering- From Analysis and Modeling to Technology Applications, InTech, Rijeka, 117-150.
  10. Hong JS, Cooper-White J, Korea-Aust. Rheol. J., 21(4), 269 (2009)
  11. Hong JS, Kim JG, Compos. Interfaces, 21, 703 (2014)
  12. Husny J, Cooper-White JJ, J. Non-Newton. Fluid Mech., 137(1-3), 121 (2006)
  13. Janssen JMH, Meijer HEH, J. Rheol., 37, 597 (1993)
  14. Li PCH, 2006, Microfluidic Lab-on a-Chip for Chemical and Biological Analysis and Discovery, CRC press, Florida.
  15. Lin SP, Reitz RD, Annu. Rev. Fluid Mech., 30, 85 (1998)
  16. Matsumoto T, Mashiko K, Biopolymers, 29, 1707 (1990)
  17. Matsumoto T, Masahiro K, Masuda T, J. Chem. Soc.-Faraday Trans., 88, 2673 (1992)
  18. Milliken WJ, Leal LG, J. Non-Newton. Fluid Mech., 40, 355 (1991)
  19. Mohammadi A, Colloid Polym. Sci., 293, 941 (2015)
  20. Nunes JK, Tsai SSH, Wan J, Stone HA, J. Phys. D-Appl. Phys., 46, 114002 (2013)
  21. Patel HA, Somani RS, Bajaj HC, Jasra RV, Bull. Mat. Sci., 29, 133 (2006)
  22. Rastoul K, Damme HV, Lafuma F, Lequeux F, Colombet P, Mansoutre S, Pasquier M, Polym. Int., 52, 633 (2003)
  23. Rayleigh L, Proc. Roy. Soc. London A, 29, 71 (1879)
  24. Rehm BHA, 2009, Alginates: Biology and Applications, Springer, New York.
  25. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143(2-3), 170 (2007)
  26. Rodriguez-Rivero C, Hilliou L, Del Valle EMM, Galan MA, Rheol. Acta, 53(7), 559 (2014)
  27. Rosengarten G, Harvie DJE, Cooper-White JJ, Appl. Math. Model., 30, 1033 (2006)
  28. Schramm LL, Hepler LG, Can. J. Chem., 72, 1915 (1994)
  29. Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA, Langmuir, 22(21), 8618 (2006)
  30. Shin YJ, Su CC, Shen YH, Mater. Res. Bull., 41(10), 1964 (2006)
  31. Stone HA, Annu. Rev. Fluid Mech., 26, 65 (1994)
  32. Stone HA, Stroock AD, Ajdari A, Annu. Rev. Fluid Mech., 36, 381 (2004)
  33. Taylor GI, Proc. R. Soc. London A, 138, 41 (1932)
  34. Tomotika S, Proc. R. Soc. London A, 150, 322 (1935)
  35. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA, Phys. Rev. Lett., 99, 094502 (2007)
  36. Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM, J. Appl. Polym. Sci., 115(2), 1199 (2010)
  37. Xu Q, Nakajima M, Appl. Phys. Lett., 85, 3726 (2004)
  38. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM, Angew. Chem.-Int. Edit., 44, 724 (2005)
  39. Yang J, Zhao J, Fang Y, Carbohydr. Res., 343, 719 (2008)
  40. Zhou C, Yue P, Feng JJ, Phys. Fluids, 18, 092105 (2006)