Korean Journal of Chemical Engineering, Vol.33, No.2, 603-609, February, 2016
Synergetic effect of biomass mixture on pyrolysis kinetics and biocrude-oil characteristics
E-mail:
Biocrude-oil characteristics were investigated from fast pyrolysis of a mixture of Douglas fir and coffee ground. The mixture was prepared on a 1 : 1 weight basis and pyrolyzed in a bubbling fluidized bed reactor. Characteristics of biocrude-oil were compared at various reaction temperatures ranging from 673-873K. The mixture resulted in a more improved quality biocrude-oil than each biomass feedstock at the reaction temperature of 823 K with significantly low atomic ratio of 0.43 O/C. The kinetic parameters for biomass decomposition were investigated through Friedman, KAS, FWO and CC isoconversional models. In mixture pyrolytic conversion range of 0.1-0.8, the average activation energy was found to be 135 kJ/mol. The results showed that pyrolysis of coffee ground with Douglas fir has more synergetic effect than individual biomass, which leads to a potentially higher quality fuel with lower activation energy to that of biomass.
- Salehi E, Abedi J, Harding T, Energy Fuels, 23(7), 3767 (2009)
- ICO, Coffee consumption in East and Southeast Asia: 1990-2012. London: ICC 112-4[ICO Document], International Coffee Organization 2014.
- Oh SY, Hwang HW, Choi HS, Choi JW, Fuel, 153, 535 (2015)
- Lu Q, Yang XL, Zhu XF, J. Anal. Appl. Pyrolysis, 82, 191 (2008)
- Nanda S, Mohanty P, Kozinski JA, Dalai AK, Eng. Environ. Res., 4(3), 21 (2014)
- Bok JP, Choi YS, Choi SK, Jeong YW, Renew. Energy, 65, 7 (2014)
- Choi YS, Choi SK, Jeong YW, Environ. Prog. Sust. Ene. J., 33(4), 1405 (2014)
- Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Bioenergy Res., 6, 830 (2013)
- Bok JP, Choi HS, Choi YS, Park HC, Kim SJ, Energy, 47(1), 17 (2012)
- Wang C, Du Z, Pan J, Li J, Yang Z, J. Anal. Appl. Pyrolysis, 78, 438 (2007)
- Onal E, Uzun BB, Putun AE, Energy Conv. Manag., 78, 704 (2014)
- Martinez JD, Veses A, Mastral AM, Murillo R, Navarro MV, Puy N, Artigues A, Bartroli J, Garcia T, Fuel Process. Technol., 119, 263 (2014)
- Li X, Strezov V, Kan T, J. Anal. Appl. Pyrolysis, 110, 79 (2014)
- Kim KJ, Park SK, Korean J. Food Sci. Technol., 28(2), 153 (2006)
- Soysa R, Choi SK, Jeong YW, Kim SJ, Choi YS, J. Anal. Appl. Pyrolysis, 115, 51 (2015)
- Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164 (2010)
- White JE, Catallo WJ, Legendre BL, J. Anal. Appl. Pyrolysis, 91, 1 (2011)
- Friedman HL, J. Polym. Sci. C: Polym. Lett., 6, 183 (1964)
- Guerrero MRB, Paula MMD, Zaragoza MM, Gutierrez JS, Velderrain VG, Ortiz AL, Collins-Martinez V, Int. J. Hydrog. Energy, 39(29), 16619 (2014)
- Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100(1), 400 (2009)
- Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163 (2010)
- Sait HH, Hussain A, Salema AA, Ani FN, Bioresour. Technol., 118, 382 (2012)
- Reina J, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 37(11), 4290 (1998)
- Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949 (2003)
- Jeguirim M, Limousy L, Dutournie P, Chem. Eng. Res. Des., 92(10), 1876 (2014)