화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.31, 86-90, November, 2015
Introduction of reversible crosslinker into artificial marbles toward chemical recyclability
E-mail:
Organic/inorganic composites containing thermally breakable crosslinker were prepared for exploring the possibility in fabrication of recyclable artificial marble composed of acrylic resin and aluminum hydroxide. The breakable crosslinker was fabricated using Diels.Alder reaction from furfuryl methacrylate and bismaleimide. De-crosslinking reaction was also triggered by retro-Diels.Alder reaction. The basic properties of artificial marbles fabricated by breakable crosslinker, i.e chemical, thermal, mechanical and coloring properties, are compared to that of conventional one, which is based on unbreakable crosslinker.
  1. Binici H, Aksogan O, Shah T, Constr. Build. Mater., 19, 313 (2005)
  2. Rodrigues R, de Brito J, Sardinha M, Constr. Build. Mater., 77, 349 (2015)
  3. Chang YH, Huang PH, Wu BY, Chang SW, Constr. Build. Mater., 83, 1 (2015)
  4. Zhao J, Rock Mechanics in Civil and Environmental Engineering, CRC Press, London, 2010.
  5. Milligan LH, J. Am. Ceram. Soc., 19, 187 (1936)
  6. Horn MB, Acrylic Resins, Reinhold Publishing Co., New York, NY, 1960.
  7. Riddle H, Monomeric Acrylic Esters, Reinhold Publishing Co., New York, NY, 1954.
  8. Coyard H, Deligny P, Tuck N, Oldring P, Resins for Surface Coatings: Acrylics and Epoxies, John Wiley & Sons, New York, NY, 2001.
  9. Bera P, Guptha N, Dasan KP, Natarajan R, Rev. Adv. Mater. Sci., 32, 94 (2012)
  10. Weil ED, Levchik SV, J. Fire Sci., 22, 183 (2004)
  11. Kim HC, Jeon S, Kim HI, Lee YS, Hong MH, Choi KS, Polymer, 36, 251 (2012)
  12. Montero MA, Jordan MM, Hernandez-Crespo MS, Sanfeliu T, Appl. Clay Sci., 46, 404 (2009)
  13. Acchar W, Vieira FA, Hotza D, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 419, 306 (2006)
  14. Sarkar R, Das SK, Mandal PK, Maiti HS, J. Eur. Ceram. Soc., 26, 297 (2006)
  15. Kim BR, Kim CW, Seo YG, Lee YS, Korean Chem. Eng. Res., 50(3), 567 (2012)
  16. Misra AK, Mathur R, Rao YV, Singha AP, Goel P, J. Sci. Ind. Res., 69, 67 (2010)
  17. Aruntas HY, Guru M, Dayi M, Tekin I, Mater. Des., 31, 4039 (2010)
  18. Zweifel GS, Nantz MH, Modern Organic Synthesis: An Introduction, Freeman WH, Co., New York, NY, 2007.
  19. Choi WJ, Cha SH, Lee JC, Polym. Sci. Technol., 25(2), 114 (2014)
  20. Kavitha AA, Singha NK, ACS Appl. Mater. Interfaces, 1, 1427 (2009)
  21. Park JS, Darlington T, Starr AF, Takahashi K, Riendeau J, Hahn HT, Compos. Sci. Technol., 70, 2154 (2010)
  22. Yuan YC, Yin T, Rong MZ, Zhang MQ, Express Polym. Lett., 2, 238 (2008)
  23. Ishida K, Yoshie N, Macromol. Biosci., 8, 916 (2008)
  24. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G, Angew. Chem.-Int. Edit., 10, 1668 (2002)
  25. Gandini A, Prog. Polym. Sci, 38, 1 (2013)
  26. Gheneim R, Perez-Berumen C, Gandini A, Macromolecules, 35(19), 7246 (2002)
  27. Kavitha AA, Singha NK, J. Polym. Sci. A: Polym. Chem., 45(19), 4441 (2007)
  28. Rulısek L, Sebek P, Havlas Z, Richard H, Pavel C, Svatos A, J. Org. Chem., 70, 6295 (2005)
  29. McElhanon JR, Wheeler DR, Org. Lett., 3, 2681 (2001)
  30. Scheirs J, Compositional and Failure Analysis of Polymers: A Practical Approach,Wiley, New York, NY, 2000.
  31. Kanie T, Arikawa H, Fujii K, Inoue K, J. Oral. Rehabil., 31, 166 (2004)
  32. Salamone JC, Polymeric Materials Encyclopedia, CRC Press, New York, NY, 1996.
  33. Kutz M, Mechanical Engineers’ Handbook, Materials and Engineering Mechanics, John Wiley & Sons, New York, NY, 2015.