Korea-Australia Rheology Journal, Vol.27, No.4, 297-307, November, 2015
Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields
E-mail:
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress
growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
Keywords:xanthan gum;time-dependent rheology;interrupted shear flow;step-incremental shear flow;step-reductional shear flow
- Ahmed J, Ramaswamy HS, Food Hydrocolloids, 18, 367 (2004)
- Bae JW, Lee JS, Song KW, Text. Sci. Eng., 50, 292 (2013)
- Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1 (1997)
- BeMiller JN, Huber KC, 2008, Food Chemistry-Carbohydrates, Damodaran S, Parkin KL, Fennema OR Eds., CRC Press, Boca Raton, pp. 83-154
- Born K, Langendorff V, Boulenguer P, 2001, Biopolymers, Vol. 5, Wiley-Interscience, New York.
- Boukany PE, Wang SQ, Wang XR, J. Rheol., 53(3), 617 (2009)
- Camesano TA, Wilkinson KJ, Biomacromolecules, 2(4), 1184 (2001)
- Carmona JA, Ramirez P, Calero N, Munoz J, J. Food Eng., 126, 165 (172)
- Casas JA, Santos VE, Garcia-Ochoa F, Enzyme Microb. Technol., 26(2-4), 282 (2000)
- Chang GS, Koo JS, Song KW, Korea-Aust. Rheol. J., 15(2), 55 (2003)
- Choppe E, Puaud F, Nicolai T, Benyahia L, Carbohydr. Polym., 82, 1228 (2010)
- Chun MS, Kim C, Lee DE, Phys. Rev. E, 79, 051919 (2009)
- Chun MS, Ko MJ, J. Korean Phys. Soc., 61, 1108 (2012)
- Chun MS, Park OO, Macromol. Chem. Phys., 195, 701 (1994)
- Garcia-Ochoa F, Gomez E, Biochem. Eng. J., 1, 1 (1998)
- Garcia-Ochoa F, Santos VE, Alcon A, Chem. Biochem. Eng. Quart., 11, 69 (1997)
- Garcia-Ochoa F, Santos VE, Casas JA, Gomez E, Biotechnol. Adv., 18, 549 (2000)
- Giboreau A, Cuvelier G, Launay B, J. Texture Stud., 25, 119 (1994)
- Holzwarth G, Prestridge EB, Science, 197, 757 (1977)
- Huang J, Yan B, Faghihnejad A, Xu H, Zeng H, Korea-Aust. Rheol. J., 26(1), 3 (2014)
- Jang HY, Zhang K, Chon BH, Choi HJ, J. Ind. Eng. Chem., 21, 745 (2015)
- Kang KS, Pettit DJ, 1993, Industrial Gums, Whistler RL, Be Miller JN, Eds., 3rd ed., Academic Press, New York, pp. 341-398.
- Katzbauer B, Polym. Degrad. Stabil., 59, 81 (1998)
- Krishnan K, Burghardt WR, Lodge TP, Bates FS, Langmuir, 18(25), 9676 (2002)
- Lapasin R, Pricl S, 1999, Rheology of Industrial Polysaccharides:Theory and Applications, Aspen Publishers, Gaithersburg, MD.
- Lee JS, Kim YS, Song KW, Korea-Aust. Rheol. J., 27(3), 227 (2015)
- Letwimolnun W, Vergnes B, Ausias G, Carreau PJ, J. Non-Newton. Fluid Mech., 141(2-3), 167 (2007)
- Lim T, Uhl JT, Prudhomme RK, J. Rheol., 28, 367 (1984)
- Ma L, Barbosa-Canovas GV, J. Food Sci., 62, 1124 (1997)
- Mahaut F, Chateau X, Coussot P, Ovarlez G, J. Rheol., 52(1), 287 (2008)
- Marcotte M, Taherian-Hoshahili AR, Ramaswamy HS, Food Res. Int., 34, 695 (2001)
- Milas M, Rinaudo M, Knipper M, Schuppiser JL, Macromolecules, 23, 2506 (1990)
- Ogawa K, Yui T, 1998, Polysaccharides: Structural Diversity and Functional Versatility-X.ray Diffraction Study of Polysaccharides, S. Dumitriu Ed., Marcel Dekker, New York, pp.101-130.
- Pal R, AIChE J., 41(4), 783 (1995)
- Palaniraj A, Jayaraman V, J. Food Eng., 106(1), 1 (2011)
- Pelletier E, Viebke C, Meadows J, Williams PA, Biopolymers, 59, 339 (2001)
- Richardson RK, Ross-Murphy SB, Int. J. Biol. Macromol., 9, 257 (1987)
- Rochefort WE, Middleman S, J. Rheol., 31, 337 (1987)
- Rodd AB, Cooper-White J, Dunstan DE, Boger DV, Polymer, 42(1), 185 (2001)
- Rossmurphy SB, J. Rheol., 39(6), 1451 (1995)
- Ross-Murphy SB, Shatwell KP, Biorheology, 30, 217 (1993)
- Santore MM, Prudhomme RK, Carbohydr. Polym., 12, 329 (1990)
- Schott H, 1985, Remington’s Pharmaceutical Sciences-Colloidal Dispersions, Gennaro AR, Chase GD, Eds, Mack, Philadelphia, pp. 286-289.
- Song KW, Kim YS, Chang GS, Fiber. Polym., 7, 129 (2006)
- Song KW, Kuk HY, Chang GS, Korea-Aust. Rheol. J., 18(2), 67 (2006)
- Stokke BT, Christensen BE, Smidsrod O, 1998, Polysaccharides:Structural Diversity and Functional Versatility-Macromolecular Properties of Xanthan, Dumitriu S, Ed., Marcel Dekker, New York, pp. 433-472.
- Tam KC, Tiu C, J. Rheol., 33, 257 (1989)
- Urlacher B, Noble O, 1997, Thickening and Gelling Agents for Food-Xanthan, Imeson A, Ed., Chapman & Hall, London, pp. 284-311.
- Whitcomb PJ, Macosko CW, J. Rheol., 22, 493 (1978)
- Wyatt NB, Liberatore MW, J. Appl. Polym. Sci., 114(6), 4076 (2009)
- Xu L, Xu G, Liu T, Chen Y, Gong H, Carbohydr. Polym., 92, 516 (2013)
- Zirnsak MA, Boger DV, Tirtaatmadja V, J. Rheol., 43(3), 627 (1999)