화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.26, No.1, 3-14, February, 2014
Understanding nanorheology and surface forces of confined thin films
E-mail:
Understanding the nanorheology and associated intermolecular/surface forces of fluids in confined geometries or porous media is of both fundamental and practical importance, providing significant insights into various applications such as lubrication and micro/nanoelectromechanical systems. In this work, we briefly reviewed the fundamentals of nanoreheolgy, advances in experimental techniques and theoretical simulation methods, as well as important progress in the nanorheology of confined thin films. The advent of advanced experimental techniques such as surface forces apparatus (SFA), X-ray surface forces apparatus (XSFA) and atomic force microscope (AFM) and computational methods such as molecular dynamics simulations provides powerful tools to study a wide range of rheological phenomena at molecular level and nano scale. One of the most challenging issues unresolved is to elucidate the relationship between the rheological properties and structural evolution of the confined fluid films and particles suspensions. Some of the emerging research areas in the nanorheology field include, but are not limited to, the development of more advanced characterization techniques, design of multifunctional rheological fluids, bio-related nanorheology, and polymer brushes.
  1. Allen MP, Tildesley DJ, Computer Simulations of Liquids, Oxford University Press, USA. (1989)
  2. Aoyagi T, Takimoto J, Doi M, J. Chem. Phys., 115(1), 552 (2001)
  3. Atkin R, Warr GG, J. Phys. Chem. C., 111(13), 5162 (2007)
  4. Benz M, Chen NH, Israelachvili JN, J. Biomed.Mater. Res., Part A., 71A(1), 6 (2004)
  5. Bhushan B, Israelachvili JN, Landman U, Nature, 374(6523), 607 (1995)
  6. Bhushan B, Wear., 259, 1507 (2005)
  7. Bitsanis I, Magda JJ, Tirrell M, Davis HT, J. Chem. Phys., 87(3), 1733 (1987)
  8. Chan DYC, Horn RG, J. Chem. Phys., 83(10), 5311 (1985)
  9. Chan DY.C, Klaseboer E, Manica R, Soft Matter., 7(6), 2235 (2011)
  10. Christenson HK, J. Chem. Phys., 78(11), 6906 (1983)
  11. Chun MS, Korea-Aust. Rheol. J., 24(3), 249 (2012)
  12. Chun MS, Kim C, Lee DE, Phys. Rev. E., 051919, 79(5), 1 (2009)
  13. Cohen I, Mason TG, Weitz DA, Phys. Rev. Lett., 046001, 93, 1 (2004)
  14. Contreras-Naranjo JC, Ugaz VM, Nat. Commun., 4, 1 (2013)
  15. Dagastine RR, Manica R, Carnie SL, Chan DYC, Stevens GW, Grieser F, Science., 313(5784), 210 (2006)
  16. Derjaguin B, Muller V, Toporov YP, J. Colloid Interf. Sci., 53(2), 314 (1975)
  17. Drummond C, Israelachvili J, Macromolecules, 33(13), 4910 (2000)
  18. Faghihnejad A, Zeng HB, Soft Matter., 8(9), 2746 (2012)
  19. Frantz P, Wolf F, Xiao XD, Chen Y, Bosch S, Salmeron M, Rev. Sci.Instrum., 68(6), 2499 (1997)
  20. Gee ML, McGuiggan PM, Israelachvili JN, Homola AM, J. Chem. Phys., 93(3), 1895 (1990)
  21. Golan Y, Martin-Herranz A, Li Y, Safinya CR, Israelachvili JN, Phys. Rev. Lett., 86(7), 1263 (2001)
  22. Gosvami NN, Sinha SK, Hofbauer W, O'Shea SJ, J. Chem.Phys., 126(21), 214708 (2007)
  23. Granick S, Science., 253, 1374 (1991)
  24. Greene GW, Anderson TH, Zeng H, Zappone B, Israelachvili JN, Proc. Natl. Acad. Sci. U.S.A., 106(2), 445 (2009)
  25. Greene GW, Zappone B, Soderman O, Topgaard D, Rata G, Zeng HB, Israelachvili JN, Biomaterials., 31(12), 3117 (2010)
  26. Greene GW, Banquy X, Lee DW, Lowrey DD, Yu J, Israelachvili JN, Proc. Natl. Acad.Sci. U.S.A., 108(13), 5255 (2011)
  27. Horn RG, Israelachvili JN, J.Chem. Phys., 75, 1400 (1981)
  28. Horn RG, Israelachvili JN, Macromolecules., 21(9), 2836 (1988)
  29. Israelachvili JN, Tabor D, Proc.Roy. Soc. (London)., A331, 19 (1972)
  30. Israelachvili JN, J. Colloid Interf. Sci., 110(1), 263 (1986)
  31. Israelachvili JN, Colloid Polym. Sci., 264(12), 1060 (1986)
  32. Israelachvili JN, Pure Appl. Chem., 60(10), 1473 (1988)
  33. Israelachvili JN, Kott SJ, Fetters LJ, J.Polym. Sci., Part B: Polym. Phys., 27(3), 489 (1989)
  34. Israelachvili JN, Kott SJ, J. Colloid Interf. Sci., 129(2), 461 (1989)
  35. Israelachvili JN, Mcguiggan P, Gee M, Homola A, Robbins M, Thompson P, J. Phys.: Condens. Matter., 2, SA89 (1990)
  36. Israelachvili JN, Min Y, Akbulut M, Alig A, Carver G, Greene W, Kristiansen K, Meyer E, Pesika N, Rosenberg K, Zeng H, Rep. Prog. Phys., 73(3), 1 (2010)
  37. Israelachvili JN, Intermolecular and Surface Forces, 3rd Edition, Academic Press, Santa Barbara. (2011)
  38. Jabbarzadeh A, Tanner RI, Rheol. Rev., Molecular dynamics simulation and its application tos nano-rheology, 165 (2006)
  39. Jeon J, Chun MS, J. Chem. Phys., 154904, 126(15), 1 (2007)
  40. Johnson K, Kendall K, Roberts A, Proc. Roy. Soc. (London) A., 324(1558), 301 (1971)
  41. Kappl M, Butt HJ, Part. Part. Syst. Charact., 19(3), 129 (2002)
  42. Klein J, Kamiyama Y, Yoshizawa H, Israelachvili JN, Fredrickson GH, Pincus P, Fetters LJ, Macromolecules., 26(21), 5552 (1993)
  43. Klein J, Kumacheva E, Perahia D, Mahalu D, Warburg S, Faraday. Discuss., 98, 173 (1994)
  44. Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ, Nature, 370(6491), 634 (1994)
  45. Klein J, Kumacheva E, Science, 269(5225), 816 (1995)
  46. Klein J, P. I. Mech. Eng. J-J. Eng., 220(J8), 691 (2006)
  47. Kobayashi M, Yamaguchi H, Terayama Y, Wang Z, Ishihara K, Hino M, Takahara A, Macromol. Symp., 279(1), 79 (2009)
  48. Kobayashi M, Terayama Y, Kikuchi M, Takahara A, Soft Matter., 9(21), 5138 (2013)
  49. Kristiansen K, Zeng HB, Wang P, Israelachvili JN, Adv. Funct. Mater., 21(23), 4555 (2011)
  50. Kristiansen K, Banquy X, Zeng HB, Charrault E, Giasson S, Israelachvili J, Adv. Mater., 24(38), 5236 (2012)
  51. Laurent J, Steinberger A, Bellon L, Nanotechnology., 225504, 24(22), 1 (2013)
  52. Luengo G, Israelachvili JN, Granick S, Wear., 200(1-2), 328 (1996)
  53. Maali A, Bhushan B, J. Phys.: Condens. Mat., 315201, 20(31), 1 (2008)
  54. Maugis D, J. Colloid Interf. Sci., 150(1), 243 (1992)
  55. Morrell KC, Hodge WA, Krebs DE, Mann RW, Proc.Natl. Acad. Sci. U.S.A., 102(41), 14819 (2005)
  56. Mukhopadhyay A, Granick S, Curr. Opin. Colloid Interface Sci., 6(5-6), 423 (2001)
  57. Nase J, Lindner A, Creton C, Phys. Rev. Lett., 074503, 101(7), 1 (2008)
  58. Oshea SJ, Welland ME, Rayment T, Appl. Phys. Lett., 60(19), 2356 (1992)
  59. Oshea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336 (1994)
  60. Priezjev NV, J. Chem. Phys., 136(22), 1 (2012)
  61. Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J, Nature., 425(6954), 163 (2003)
  62. Rhykerd C, Schoen M, Diester D, Cushman J, Nature., 330, 461 (1987)
  63. Ruths M, Israelachvili JN, Surface Forces and Nanorheology of Molecularly Thin Films, in Nanotribology and Nanomechanics II, Springer. (2011)
  64. Schoen M, Diestler DJ, Cushman JH, J. Chem. Phys., 100(10), 7707 (1994)
  65. Tabor D, Winterton R, Proc. Roy. Soc. (London) A., 312(1511), 435 (1969)
  66. Tabor RF, Chan DYC, Grieser F, Dagastine RR, Angew. Chem. Int. Edit., 50(15), 1534 (2011)
  67. Thompson PA, Robbins MO, Science., 250(4982), 792 (1990)
  68. Tian Y, Zhang ML, Jiang JL, Pesika N, Zeng HB, Israelachvili JN, Meng YG, Wen SZ, Phys. Rev. E., 011401, 83(1), 1 (2011)
  69. Vakarelski IU, Manica R, Tang XS, O'Shea, SJ, Stevens GW, Grieser F, Dagastine RR, Chan DYC, Natl. Acad. Sci. U.S.A., 107(25), 11177 (2010)
  70. Wen WJ, Huang XX, Yang SH, Lu KQ, Sheng P, Nat. Mater., 2(11), 727 (2003)
  71. Yamamoto S, Ejaz M, Tsujii Y, Fukuda T, Macromolecules, 33(15), 5608 (2000)
  72. Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN, Biophys. J., 92(5), 1693 (2007)
  73. Zeng H, Tian Y, Zhao B, Tirrell M, Leal LG, Israelachvili JN, Soft Matter., 3, 88 (2007)
  74. Zeng HB, Tian Y, Zhao BX, Tirrell M, Israelachvili J, Langmuir, 23(11), 6126 (2007)
  75. Zeng H, Tian Y, Zhao B, Tirrell M, Israelachvili J, Macromolecules, 40(23), 8409 (2007)
  76. Zeng H, Tian Y, Anderson TH, Tirrell M, Israelachvili JN, Langmuir, 24(4), 1173 (2008)
  77. Zeng HB, Tian Y, Zhao BX, Tirrell M, Israelachvili J, Langmuir, 25(9), 4954 (2009)
  78. Zeng HB, Zhao BX, Israelachvili JN, Tirrell M, Macromolecules, 43(1), 538 (2010)
  79. Zeng H (ed.), Polymer Adhesion, Friction, and Lubrication, John Wiley & Sons, Hoboken, NJ, USA. (2013)