화학공학소재연구정보센터
Electrophoresis, Vol.35, No.15, 2137-2145, 2014
Chip electrophoretic separation of highly homologous ammodytoxin isoforms: Three neurotoxic phospholipases A(2) of Vipera ammodytes ammodytes venom
Ammodytoxins (Atxs), a group of Ca2+-dependent neurotoxic phospholipases A(2) of Vipera ammodytes ammodytes venom, are mainly responsible for venom toxicity. Within the Atx group, LD50 values between three isoforms, A, B, and C are differing with AtxA exhibiting an LD50 value by an order of magnitude lower (more toxic) than the other two isoforms. This difference in toxicity justifies the necessity to prepare suitable antibodies and thus isoform separation to characterize the Atx content of Vipera ammodytes ammodytes venom is of importance. However, a high homology between the three Atx isoforms (differences in only two, respectively, three residues within the last 18 amino acids at the C-terminus, total length 122 residues) hindered the successful separation of isoforms to date. As the investigated phospholipases A(2) were reported to exhibit differences in pI values, we concentrate with the current work on the separation of Atx isoforms after fluorescence labeling via chip electrophoresis on a commercially available instrument to build the basis for a fast and easy to handle screening method. In the course of our work, we were able to show that samples of AtxA, AtxB, and AtxC declared to be homogenous by standard analytical techniques consisted indeed of more than one isoform of which the relative amounts were calculated by using the newly developed method.