Electrophoresis, Vol.35, No.15, 2146-2154, 2014
Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis
A new MCE method for the determination of oxalic, citric, glycolic, lactic, and 2- and 3-hydroxybutyric acids, indicators of some metabolic and neurological diseases, in cerebrospinal fluid (CSF) was developed. MCE separations were performed on a PMMA microchip with coupled channels at lower pH (5.5) to prevent proteins interference. A double charged counter-ion, BIS-TRIS propane, was very effective in resolving the studied organic acids. The limits of detection (S/N = 3) ranging from 0.1 to 1.6 mu M were obtained with the aid of contact conductivity detector implemented directly on the microchip. RSDs for migration time and peak area of organic acids in artificial and CSF samples were <0.8 and <9.7%, respectively. Recoveries of organic acids in untreated CSF samples on the microchip varied from 91 to 104%. Elimination of chloride interference, a major anionic constituent of CSF, has been reached by two approaches: (i) the use of coupled channels microchip in a column switching mode when approximately 97-99% of chloride was removed electrophoretically in the first separation channel and (ii) the implementation of micro-SPE with silver-form resin prior to the MCE analysis, which selectively removed chloride from undeproteinized CSF samples.