화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.16, No.9, 543-549, September, 2006
대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성
Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge
E-mail:
Polyimides (PI) are treated with and atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by discharge than by discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from by plasma treatment independently of .
  1. Mittal KL, Polyimides: Synthesis, Characterization, and Applications, Plenum, New York (1984) (1984)
  2. Bessonov MI, Koton MM, Kudrayavtsen VV, Laius LA, Polyimides: Thermally Stable Polymers, 2nd ed. Plenum, New York (1987) (1987)
  3. Fdger C, Khojasteh MM, McGrath JE, Polyimides: Materials Chemistry and Characterization, Elsevier, New York (1989) (1989)
  4. Ang AKS, Kang ET, Neoh KG, Tan KL, Cui CQ, Lim TB, Polymer, 41(2), 489 (2000)
  5. Weber A, Dietz A, Pockelmann R, Klages CP, J. Electrochem. Soc., 3, 1131 (1997)
  6. SvorGk V, Arenholz E, Rybka' V, Hnatowicz' V, Nuclear Instruments and Methods in Physics Research B, 122, 663 (1997)
  7. Inagaki N, Tasaka S, Hibi K, J. Polym. Sci, Polym. Chem., 30, 1425 (1992)
  8. Rozovskis G, Vinkevicius J, Jaciauskiene J, J. Adhes. Sci. Technol., 10(5), 399 (1996)
  9. Yu ZJ, Kang ET, Neoh KG, Polymer, 34, 4137 (2002)
  10. Jpark S, Lee HY, Journal of Colloid and Interface Science, 185, 267 (2005)
  11. ZHANG JY, ESROM H, KOGELSCHATZ U, EMIG G, J. Adhes. Sci. Technol., 8(10), 1179 (1994)
  12. Celina M, Kudoh H, Renk TJ, Gillen KT, Clough RL, Radiat. Phys. Chem., 10, 243 (1998)
  13. Boening HV, Plasma Science and Technology, Cornell Press, New York, 1982 (1982)
  14. Li X, Horita K, Carbon, 38, 133 (2000)
  15. Donnet JB, Park SJ, Brendle M, Carbon, 30, 263 (1992)
  16. Tsunoda R, J. Colloid Interface Sci., 188(1), 224 (1997)
  17. Granger MC, Swain GM, J. Electrochem. Soc., 146(12), 4551 (1999)
  18. Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1 (2003)
  19. Kim SH, Cho SH, Lee NE, Kim HM, Nam YW, Kim YH, Surface and Coatings Technology, 193, 101 (2005)
  20. Adamson AW, Physical Chemistry of Surfaces, 5th ed. Wiley, New York, Chapter 10, (1990) (1990)
  21. GREENWOOD OD, BOYD RD, HOPKINS J, BADYAL JPS, J. Adhes. Sci. Technol., 9(3), 311 (1995)
  22. Kim J, Kim KS, Kim YH, J. Adhesion Sci. Technol., 3, 175 (1989)
  23. Haight R, White RC, Silverman BD, Ho, J. Vac. Sci. Technolo., A, Vac, Surf. Films, 6, 2188 (1998)
  24. Ektessabi AM, Hakamata S, Thin Solid Films, 377, 621 (2000)
  25. Paupel F, Yang CH, Chen ST, Ho PS, J. Appl. Phys., 65, 1911 (1989)
  26. Naddaf M, Balasubramanian C, Alegaonkar PS, Bhokaskar VN, Mandle AB, Ganeshan V, Bhoraskar SV, Nucl. Instr. Meth. B, 22, 135 (2004)
  27. EGITTO FD, MATIENZO LJ, BLACKWELL KJ, KNOLL AR, J. Adhes. Sci. Technol., 8(4), 411 (1994)
  28. Momose Y, Ohalm T, Churna H, Okazaki S, Saruta T, Masui M, Takeuchi M, In plasma polymerization and plasma Interactions with polymeric Materials, ed. H. K. Yasuda, P153, New York: Hohn Wiley & sons (1990) (1990)
  29. Grill A, Cold Plasma in Materials Fabrication, IEEE press Inc., New York, p154, (1989) (1989)