화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.17, No.7, 390-395, July, 2007
1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발
Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices
E-mail:
We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as optical-fiber communication.
  1. Harris L, Mowbrag DJ, Skolnick MS, Hopkinson M, HilI G, Appl. Phys. Lett., 73, 969 (1998)
  2. Pan D, Towe E, Kennerly S, Appl. Phys. Lett., 73, 1937 (1998)
  3. Maimon S, Finkman E, Bahir G, Garcia JM, Petroff PM, Appl. Phys. Lett., 73, 2003 (1998)
  4. Stiff AD, Krishna S, Bhattacharya P, Kennerly SW, IEEE J. Quantum Electron., 37, 1272 (2001)
  5. Lee H, Lowe-Webb R, Johnson TJ, Yang W, Sercel PC, Appi. Phys. Lett., 73, 3556 (1998)
  6. Park HJ, Kim JH, Yoon JJ, Son JS, Lee DY, Ryu HH, Jeon M, Leem JY, J. Cryst. Growth, 300(2), 319 (2007)
  7. Jung SI, Yeo HY, Yun I, Leem JY, Han IK, Kim JS, Lee JI, Physica E, 33, 280 (2006)
  8. Kim JS, Yu PW, Leem JY, Lee JI, Noh SK, Kim JS, Kim GH, Kang SK, Ban SI, Kim SG, Jang YD, Lee UH, Yim JS, Lee D, J. Cryst. Growth, 234(1), 105 (2002)
  9. Kim JS, Lee JH, Hong SU, Han WS, Kwack HS, Lee CW, Oh DK, J. Appl. Phys., 94, 6603 (2003)
  10. Lee SJ, Noh SK, Choe JW, Kim EK, J. Crystal Growth, 267, 406 (2004)
  11. Zhao ZM, Hul'ko O, Kim HJ, Liu J, Shi B, Xie YH, Thin Solid Films, 483(1-2), 158 (2005)
  12. Pohl UW, POtschke K, Schliwa A, Lifshits MB, Shchukin VA, Jesson DE, Bimberg D, Physica E, 32, 9 (2006)
  13. Ilahi B, Sfaxi L, Maaref H, Bremond G, Guillot G, Superlattices and Microstructures, 36, 56 (2004)
  14. Hsu TM, Lan YS, Chang WH, Yeh NT, Chyi JI, Appl. Phys. Lett., 76, 691 (2000)
  15. Xu SJ, Wang XC, Chua SJ, Wang CH, Fan WJ, Jiang J, Xie XG, Appl. Phys. Lett., 72, 25 (1998)
  16. Chua SJ, Xu SJ, Wang CH, Fan WJ, Jiang J, Xie WG, in Proceedings of the 9th International Workshop on Physics of Semiconductor Devices, Narosa, India, 1997, p. 11-174 (1997)
  17. Perret N, Morris D, Frachomme-Fosse L, Cote R, Fafard S, Aimez V, Beauvais J, Phys. Rev. B, 62, 5092 (2000)
  18. Malik S, Roberts C, Murray R, Pate M, Appl. Phys. Lett., 71, 1987 (1997)
  19. Kim JS, Lee JH, Hong SU, Han WS, Kwack HS, Oh DK, J. Crystal Growth, 255, 61 (2003)