화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.6, 791-797, November, 2009
Characterization and photonic properties for the Pt-fullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60
E-mail:
In this study, the structural variations, surface states, and mass transformations of fullerene [C(60)] derivatives were investigated through the preparation of Pt-decorated oxidized fullerene and a Ptfullerene/TiO2 composite and comparison to an oxidized fullerene [C(60)O]. These derivatives were synthesized with an improved oxidation method using m-chloroperbenzoic acid (MCPBA). Weak and strong peaks of metallic platinum and titanium dioxide, along with weak pristine fullerene [C(60)] peaks, were observed in the XRD patterns for the Pt-fullerene and Pt-fullerene/TiO2 composite. SEM micrographs for the metallic Pt-fullerene and Pt-fullerene/TiO2 composite indicated that practically all the platinum and titanium dioxide that were introduced were located on the carbon cages and consequently, were dispersed into very small crystallites with growth of platinum metals and titanium dioxide. The EDX spectra of Pt-fullerene and Pt-fullerene/TiO2 composite showed the presence of C, O, and Pt, with strong Ti peaks. From the MALDI-TOF mass spectra, the differences in the spectra for the three kinds of fullerene derivatives were due to oxidation including chemical bonding and interposing of metallic platinum and titanium dioxide in the fullerene [C(60)] molecules. And, absorption property demonstrated by UV-vis diffuse reflectance method. From the photocatalytic results, the excellent activity of the Pt-fullerene/TiO2 composites for organic dye and UV irradiation time could be attributed to the synergetic effects between photocatalysis of the supported TiO2 and absorptivity of the platinum and fullerene.
  1. Stevenson CD, Noyes JR, Reiter RC, J. Am. Chem. Soc., 122(51), 12905 (2000)
  2. Oh WC, Jung AR, Ko WB, Anal. Sci. Technol., 20, 124 (2007)
  3. Oh WC, Jung AR, Ko WB, J. Ceram. Process. Res., 9, 19 (2008)
  4. Oh WC, Jung AR, Ko WB, J. Ind. Eng. Chem., 13(7), 1208 (2007)
  5. Oh WC, Jung AR, Ko WB, J. Ind. Eng. Chem., 13(7), 1208 (2007)
  6. Akiyama T, Miyazaki A, Sutoh M, Ichinose I, Kunitake T, Yamada S, Colloids Surf., 169, 137 (2000)
  7. Hasobe T, Hattori S, Kanmat PV, Fukuzumi S, Tetrahedron, 62, 1937 (2006)
  8. Dresselhaus MS, Dresselhaus G, Eklund PC, Science of Fullerene and Carbon Nanotube, Academic Press, USA, 1996, p. 587.
  9. Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN, Electrochim. Acta, 47(21), 3545 (2002)
  10. Langa F, Cruz P, Delgado JL, Espildora E, Gomez-Escalonilla MJ, Hoz A, J. Mater. Chem., 12, 2130 (2002)
  11. Dang H, Levitus M, Garcia-Garibay MA, J. Am. Chem. Soc., 124(1), 136 (2002)
  12. Drees M, Premaratne K, Graupner W, Heflin JR, Appl. Phys. Lett., 81, 4607 (2002)
  13. Kaneko M, Okura I, Photocatalysis: Science and Technology, Kodansha & Springer, 1999,, p. 124.
  14. Serpone N, Pelizzetti E, Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989, p. 245.
  15. Thurnauer MC, Rajh T, Tiede DM, Acta Chem. Scand., 51, 610 (1997)
  16. Tsuchitori I, Sasaki G, Fukunaga H, J. Jpn. Inst. Metals, 61, 544 (1997)
  17. Clark IJ, Takeuchi T, Ohtori N, Sinclair D, J. Mater. Chem., 9, 83 (1991)
  18. Dube S, Rao NN, J. Photochem. Photobiol. A: Chem., 93, 71 (1996)
  19. Oh WC, Chen ML, Lim CS, J. Ceram. Process. Res., 8, 119 (2007)
  20. Oh WC, Jung AR, Ko YS, Ko WB, Proceeding of CSE’2007, Kyushu University, (2007), p. 33.
  21. Oh WC, Bae JS, Chen ML, Bull. Korean Chem. Soc., 27, 1423 (2006)
  22. Oh WC, Bae JS, Chen ML, Ko YS, Anal. Sci. Technol., 19, 376 (2006)
  23. Kamat PV, Gevaert M, Vinodgopal K, J. Phys. Chem. B, 101(22), 4422 (1997)
  24. Makarov VI, Kochubei SA, Khmelinskii IV, Chem. Phys. Lett., 355(5-6), 504 (2002)
  25. Nam W, Woo K, Han G, J. Ind. Eng. Chem., 15(3), 348 (2009)
  26. Chen ML, Bae JS, Oh WC, Anal. Sci. Technol., 19, 460 (2006)
  27. Oh WC, Bae JS, Chen ML, Carbon Sci., 7, 259 (2006)
  28. Oh WC, Chen ML, J. Ceram. Process. Res., 8, 316 (2007)
  29. Tsumura T, Kojitani N, Izumi I, Iwashita N, Toyoda M, Inagaki M, J. Mater. Chem., 12, 1391 (2002)
  30. Oh WC, Park TS, J. Environ. Eng. Res., 12, 218 (2007)
  31. Liu SM, Gan LM, Liu LH, Zhang WD, Zeng HC, Chem. Mater., 14, 1391 (2002)
  32. Burger B, Kuzmany H, Nguyen TM, Sitter H, Walter M, Martin K, Kullen K, Carbon, 36, 661 (1998)
  33. Gu Z, Zhang L, Margrave JL, Daveydov VA, Rakhmanina AV, Agafonov V, Khabashesku VN, Carbon, 43, 2989 (2005)
  34. Baibarac M, Mihut L, Preda N, Baltog I, Mevellec JY, Lefrant S, Carbon, 43, 1 (2005)
  35. Xu C, Killmeyer R, Gray ML, Khan SUM, Appl. Catal. B: Environ., 64(3-4), 312 (2006)
  36. Chen ML, Ko YS, Oh WC, Carbon Sci., 8, 6 (2007)
  37. Oh WC, Han SB, Bae JS, Anal. Sci. Technol., 20, 279 (2007)
  38. Schwarzenbach RP, Gschwend PM, Imboden DM, Environmental Organic Chemistry, 2nd ed., John Wily and Sons, 2002,, p. 87.
  39. Oh WC, Chen ML, Bull. Korean Chem. Soc., 29, 159 (2008)
  40. Matsunaga T, Inagaki M, Proceeding of the 32nd Annual Meeting in Carbon Society of Japan, 2004, p. 270.