Polymer(Korea), Vol.39, No.1, 180-184, January, 2015
폴리프로필렌으로 그래프트된 그래핀 옥사이드 제조 및 특성 분석
Synthesis and Characterization of Polypropylene-grafted Graphene Oxide via “Grafting-to” Method
E-mail:,
초록
폴리프로필렌(PP)으로 그래프트된 그래핀 옥사이드(PP-grafted GO)는 2-bromoisobutyryl 그룹을 가진 GO (GO-Br)와 하이드록시 그룹을 가진 PP(PP-OH)와의 “grafting-to” 화학반응을 통하여 제조하였다. GO-Br은 GO와 2-bromoisobutyryl bromide를 염기촉매 하에서 반응시켜 얻을 수 있었고, PP-OH는 maleic anhydride가 그래프트된 PP(PP-MAH)와 ethanolamine과 반응하여 제조하였다. 제조된 PP-grafted GO는 PP-OH에 비하여 녹는점이 높은 온도로 이동하였고, 열적 안정성은 GO와 PP-OH에 비하여 우수한 것을 확인하였다. 이러한 결과는 그래프트된 PP 고분자가 GO의 열적 안정성을 향상시키는 것으로 판단된다. 또한 PP-grafted GO의 표면은 GO-Br에 비하여 거칠기가 증가되는 것을 확인하여 PP가 GO 표면에 화학적으로 결합한 것을 알 수 있었다. 제조된 PP-grafted GO의 분석은 FTIR, Raman, DSC, TGA, SEM과 같은 다양한 분석장비를 이용하여 수행하였다.
PP-grafted GO was prepared by the reaction of graphene oxide (GO) containing 2-bromoisobuyryl groups and polypropylene (PP) having hydroxyl groups (PP-OH) via a “grafting-to” method. GO-Br was synthesized by the reaction of GO and 2-bromoisobutyryl bromide under a basic condition. PP-MAH was reacted with ethanolamine to produce PPOH. The melting temperature of PP-grafted GO was shifted to the higher temperature than that of PP-OH. Also, the thermal stability of PP-grafted GO was increased as compared to PP-OH and GO. These results demonstrated that the grafted coating polymer PP was effective for enhancing the thermal stability of GO. The higher surface roughness of PP-grafted GO was resulted from the chemical attachment of PP on the surface of GO. The characterization of PP-grafted GO was conducted from Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM).
- Lee Y, Bae S, Jang H, Jang S, Zhu SE, Kim SH, Song YI, Hong BH, Ahn JH, Nano Lett., 10, 490 (2010)
- Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ, ACS Nano, 4, 1963 (2010)
- Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978 (2010)
- Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
- Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH, Polym Test., 31(3), 282 (2012)
- Liu Z, Liu J, Cui L, Wang R, Luo X, Barrow CJ, Yang W, Carbon, 51, 148 (2013)
- Kim KM, Chujo Y, J. Mater. Chem., 13, 1384 (2003)
- Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 39(22), 4035 (2001)
- Luecke S, Stoppek-Langner K, Appl. Aurf. Sci., 144, 713 (1999)
- Jeon JH, Lim JH, Kim KM, Polymer, 50(19), 4488 (2009)
- Lim JH, Ko YW, Kim KY, Kim KM, Polym.(Korea), 36(5), 656 (2012)
- Jeon JH, Lee SH, Lim JH, Kim KM, J. Appl. Polym. Sci., 124(4), 3064 (2012)
- Lee SH, Lim JH, Kim KM, J. Appl. Polym. Sci., 124(5), 3792 (2012)
- Lee JH, Nam JH, Lim JH, Moon SC, Kim KY, Kim KM, Compos. Interfaces, 9, 583 (2013)
- Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
- Lee SH, Dreyer DR, An JH, Velamakanni A, Piner RD, Park S, Zhu YW, Kim SO, Bielawski CW, Ruoff RS, Macromol. Rapid Commun., 31(3), 281 (2010)
- Wang DR, Zhang XM, Zha JW, Zhao J, Dang ZM, Hu GH, Polymer, 54(7), 1916 (2013)
- Wu N, She X, Yang D, Wu X, Su F, Chen Y, J. Mater. Chem., 22, 17254 (2012)
- Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y, Chem. Eng. J., 237, 411 (2014)