Polymer(Korea), Vol.36, No.5, 656-661, September, 2012
그래핀과 실세스키옥세인을 포함한 팔라듐 나노입자와의 나노복합체 제조
Fabrication of Hybrid Nanocomposites of PAA-grafted Graphene and Pd Nanoparticles having POSS (Pd-POSS)
E-mail:,
초록
케이지 구조의 POSS-NH3+를 이용하여 팔라듐 입자들의 자기 조직화로 인한 구조가 제어된 Pd-POSS 나노입자를 제조하였다. 또한 흑연을 강산과 산화제를 이용하여 산화된 그래핀 옥사이드(GO)를 합성한 후 얻어진 GO와 NaBH4와의 반응을 통하여 그래핀을 제조하였다. 합성된 그래핀과 acrylic acid와 라디칼 중합 반응을 통하여 그래핀표면에 poly(acrylic acid)(PAA)가 결합된 PAA-grafted graphene을 얻었다. Pd-POSS와 PAA-grafted graphene을 이용한 나노복합체는 POSS-NH3+로 인하여 양전하를 띠는 Pd-POSS 나노입자와 PAA로 인하여 음전하를 띠는 PAAgrafted graphene와의 정전기적 인력을 이용하여 제조하였다. Pd-POSS 나노입자가 PAA로 치환된 그래핀 표면에 정전기적 인력으로 결합되어 있고, 나노복합체의 열적 안정성은 PAA와 PAA-grafted graphene 보다 우수한 것을 확인할 수 있었다. 제조된 Pd-POSS/PAA-grafted graphene 나노복합체의 구조 및 형태와 열적 안정성은 FE-SEM, AFM, TEM, EDX, FTIR과 TGA를 통하여 분석하였다.
The palladium nanoparticles were self-assembled to make Pd-POSS using POSS-NH3+ (polyhedral oligomeric silsesquioxane) as a crosslinker. Graphene oxide (GO) was produced by the reaction of graphite under a strong acid and oxidizer and poly(acrylic acid) (PAA) was covalently grafted on the surface of graphene to make PAA-grafted graphene through the radical polymerization of acrylic acid and GO along with a reduction process under NaBH4. The nanocomposites of Pd-POSS and PAA-grafted graphene were fabricated via ionic interactions between positively charged Pd-POSS and negatively charged PAA-grafted graphene. Pd-POSS nanoparticles were attached to the surface of PAA-grafted graphene through ionic interactions. The thermal stability of Pd-POSS/PAA-grafted graphene was higher than that of PAA and PAA-grafted graphene. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA-grafted graphene were studied by FE-SEM, AFM, TEM, FTIR, and TGA.
Keywords:graphene oxide;polyhedral oligomeric silsesquioxane (POSS);ionic interactions;hybrid nanocomposites.
- Novoselov KS, Science., 306, 666 (2004)
- Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
- Park S, Ruoff RS, Nat. Nanotechnol., 4, 217 (2009)
- Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem.Soc. Rev., 39, 228 (2010)
- He H, Klinowski J, Foster M, Lert A, Chem. Phys. Lett., 287, 53
- Stankovich S, J. Mater. Chem., 16, 155 (2006)
- Stankovich S, Carbon., 45, 1558 (2007)
- Moon IK, LEE JH, Ruoff RS, Lee HY, Nat.Commun., 1, 73 (2010)
- Dan L, Nat. Nanotechnol., 3, 101 (2008)
- Park S, Chem. Mater., 20, 6592 (2008)
- Park S, An J, Jung I, Nano Lett., 9, 1593 (2009)
- Muszynski R, Seger B, Kamat PV, J. Phys. Chem. C., 112, 5263 (2008)
- Kim KM, Keum DK, Chujo Y, Macromolecules, 36(3), 867 (2003)
- Kim KM, Chujo Y, J. Mater. Chem., 13, 1384 (2003)
- Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 41(9), 1306 (2003)
- Kim KM, Adachi K, Chujo Y, Polymer, 43(4), 1171 (2002)
- Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 39(22), 4035 (2001)
- Naka K, Itoh H, Chujo Y, Nano Lett., 2, 1183 (2002)
- Luecke S, Stoppek-Langner K, Appl. Aurf. Sci., 144, 713 (1999)
- Li G, Wang L, Ni H, Pittman CU, J. Inorg. Organomet.Polym., 11, 123 (2001)
- Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P, J. Polym. Sci. B: Polym. Phys., 39(22), 2727 (2001)
- Fu BX, Gelfer MY, Hsiao BS, Phillips S, Viers B, Blanski R, Ruth P, Polymer, 44(5), 1499 (2003)
- Joshi A, Butola BS, Polymer, 45(14), 4953 (2004)
- Shen JF, Hu YZ, Li C, Qin C, Shi M, Ye MX, Langmuir, 25(11), 6122 (2009)
- Jeon JH, Lim JH, Chujo Y, Kim KM, Polym.(Korea), 33(6), 615 (2009)