화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.5, 656-661, September, 2012
그래핀과 실세스키옥세인을 포함한 팔라듐 나노입자와의 나노복합체 제조
Fabrication of Hybrid Nanocomposites of PAA-grafted Graphene and Pd Nanoparticles having POSS (Pd-POSS)
E-mail:,
초록
케이지 구조의 POSS-NH3+를 이용하여 팔라듐 입자들의 자기 조직화로 인한 구조가 제어된 Pd-POSS 나노입자를 제조하였다. 또한 흑연을 강산과 산화제를 이용하여 산화된 그래핀 옥사이드(GO)를 합성한 후 얻어진 GO와 NaBH4와의 반응을 통하여 그래핀을 제조하였다. 합성된 그래핀과 acrylic acid와 라디칼 중합 반응을 통하여 그래핀표면에 poly(acrylic acid)(PAA)가 결합된 PAA-grafted graphene을 얻었다. Pd-POSS와 PAA-grafted graphene을 이용한 나노복합체는 POSS-NH3+로 인하여 양전하를 띠는 Pd-POSS 나노입자와 PAA로 인하여 음전하를 띠는 PAAgrafted graphene와의 정전기적 인력을 이용하여 제조하였다. Pd-POSS 나노입자가 PAA로 치환된 그래핀 표면에 정전기적 인력으로 결합되어 있고, 나노복합체의 열적 안정성은 PAA와 PAA-grafted graphene 보다 우수한 것을 확인할 수 있었다. 제조된 Pd-POSS/PAA-grafted graphene 나노복합체의 구조 및 형태와 열적 안정성은 FE-SEM, AFM, TEM, EDX, FTIR과 TGA를 통하여 분석하였다.
The palladium nanoparticles were self-assembled to make Pd-POSS using POSS-NH3+ (polyhedral oligomeric silsesquioxane) as a crosslinker. Graphene oxide (GO) was produced by the reaction of graphite under a strong acid and oxidizer and poly(acrylic acid) (PAA) was covalently grafted on the surface of graphene to make PAA-grafted graphene through the radical polymerization of acrylic acid and GO along with a reduction process under NaBH4. The nanocomposites of Pd-POSS and PAA-grafted graphene were fabricated via ionic interactions between positively charged Pd-POSS and negatively charged PAA-grafted graphene. Pd-POSS nanoparticles were attached to the surface of PAA-grafted graphene through ionic interactions. The thermal stability of Pd-POSS/PAA-grafted graphene was higher than that of PAA and PAA-grafted graphene. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA-grafted graphene were studied by FE-SEM, AFM, TEM, FTIR, and TGA.
  1. Novoselov KS, Science., 306, 666 (2004)
  2. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  3. Park S, Ruoff RS, Nat. Nanotechnol., 4, 217 (2009)
  4. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem.Soc. Rev., 39, 228 (2010)
  5. He H, Klinowski J, Foster M, Lert A, Chem. Phys. Lett., 287, 53
  6. Stankovich S, J. Mater. Chem., 16, 155 (2006)
  7. Stankovich S, Carbon., 45, 1558 (2007)
  8. Moon IK, LEE JH, Ruoff RS, Lee HY, Nat.Commun., 1, 73 (2010)
  9. Dan L, Nat. Nanotechnol., 3, 101 (2008)
  10. Park S, Chem. Mater., 20, 6592 (2008)
  11. Park S, An J, Jung I, Nano Lett., 9, 1593 (2009)
  12. Muszynski R, Seger B, Kamat PV, J. Phys. Chem. C., 112, 5263 (2008)
  13. Kim KM, Keum DK, Chujo Y, Macromolecules, 36(3), 867 (2003)
  14. Kim KM, Chujo Y, J. Mater. Chem., 13, 1384 (2003)
  15. Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 41(9), 1306 (2003)
  16. Kim KM, Adachi K, Chujo Y, Polymer, 43(4), 1171 (2002)
  17. Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 39(22), 4035 (2001)
  18. Naka K, Itoh H, Chujo Y, Nano Lett., 2, 1183 (2002)
  19. Luecke S, Stoppek-Langner K, Appl. Aurf. Sci., 144, 713 (1999)
  20. Li G, Wang L, Ni H, Pittman CU, J. Inorg. Organomet.Polym., 11, 123 (2001)
  21. Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P, J. Polym. Sci. B: Polym. Phys., 39(22), 2727 (2001)
  22. Fu BX, Gelfer MY, Hsiao BS, Phillips S, Viers B, Blanski R, Ruth P, Polymer, 44(5), 1499 (2003)
  23. Joshi A, Butola BS, Polymer, 45(14), 4953 (2004)
  24. Shen JF, Hu YZ, Li C, Qin C, Shi M, Ye MX, Langmuir, 25(11), 6122 (2009)
  25. Jeon JH, Lim JH, Chujo Y, Kim KM, Polym.(Korea), 33(6), 615 (2009)