Polymer(Korea), Vol.39, No.1, 78-87, January, 2015
SPG 유화법을 사용하여 현탁중합한 코어-쉘 구조를 갖는 열팽창 마이크로캡슐 제조: 가교제 및 안정제의 영향
Suspension Polymerization of Thermally Expandable Microcapsules with Core-Shell Structure Using the SPG Emulsification Technique: Influence of Crosslinking Agents and Stabilizers
E-mail:
초록
30-50 μm의 입도를 갖는 마이크로캡슐을 목표로 poly(acrylonitrile-co-methyl methacrylate)를 쉘로, n-octane을 코어로 하는 코어-쉘 구조의 열팽창 마이크로캡슐을 합성하였다. SPG 멤브레인 유화 후 현탁 중합하여 기존의 현탁 중합대비 균일한 입자를 합성하였다. 또한 네 가지 안정제 및 다섯 가지 가교제의 종류와 함량에 따른 캡슐의 합성을 진행하였다. Poly(vinyl alcohol)을 안정제로 하여 합성한 캡슐의 표면이 매끈하면서도 균일한 형태를 보였으며, 액체 탄화수소가 코어에 캡슐화된 양 또한 우수하였다. 또한 가교제로 1,4-butnaediol methacrylate (BDDMA)를 첨가했을 때 평균입경 36.8 μm의 입자가 균일하게 합성되었다. 또한 BDDMA를 0.05 mol% 함량으로 합성한 입자의 캡슐화 정도가 가장 우수하였다.
With aiming to prepare microcapsules having a particle size of 30-50 μm, thermally expandable capsules with relatively uniform particle sizes consisting of a n-octane/poly(acrylonitrile-co-methyl methacrylate) core/shell structure were synthesized using SPG membrane emulsification and suspension polymerization. Four steric stabilizers and five crosslinking agents were employed. When poly(vinyl alcohol) as a stabilizer was used, the prepared capsules showed a
smooth and regular morphology and the liquid hydrocarbon (n-octane) was well encapsulated in the core. When 1,4-butnaediol methacrylate (BDDMA) was used as a crosslinker, the uniform capsules with the average diameter of 36.8 μm were synthesized. The capsules prepared with 0.05 mol% BDDMA showed the best encapsulation efficiency.
- Jonsson M, Nordin O, Malmstrom E, Hammer C, Polymer, 47(10), 3315 (2006)
- Yoo JN, Polymer Science and Technology, 2, 294 (1991)
- Jonsson M, Nordin O, Kron AL, Malmstrom E, J. Appl. Polym. Sci., 117(1), 384 (2010)
- Kawaguchi Y, Oishi T, J. Appl. Polym. Sci., 93(2), 505 (2004)
- Jonsson M, Nystrom D, Nordin O, Malmstrom E, Eur. Polym. J., 45, 2374 (2009)
- Jonsson M, Nordin O, Kron AL, Malmstrom E, J. Appl. Polym. Sci., 118(2), 1219 (2010)
- Chu LY, Xie R, Zhu JH, Chen WM, Yamaguchi T, Nakao S, J. Colloid Interface Sci., 265(1), 187 (2003)
- Rahman A, Dickinson ME, Farid MM, Mater. Renew. Sustain. Energy, 1, 1 (2012)
- Lee J, Hwang DR, Shim SE, Rhym YM, Macromol. Res., 18(12), 1142 (2010)
- Yuyama H, Hashimoto T, Ma GH, Nagai M, Omi S, J. Appl. Polym. Sci., 78(5), 1025 (2000)
- Omi S, Colloids Surf. Physicochem. Eng. Aspects, 109, 97 (1996)
- Li W, Song GL, Tang GY, Chu XD, Ma SD, Liu CF, Energy, 36(2), 785 (2011)
- Kawaguchi Y, Itamura Y, Onimura K, Oishi T, J. Appl. Polym. Sci., 96(4), 1306 (2005)
- Nakashima T, Shimizu M, Kukizaki M, Adv. Drug Deliv. Rev., 45, 47 (2000)
- Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC, Langmuir, 17(26), 8062 (2001)
- Dowding PJ, Vincent B, Colloids Surf. Physicochem. Eng. Aspects, 161, 259 (2000)
- Kim DH, Lee DY, Lee KS, Choe SJ, Macromol. Res., 17(4), 250 (2009)
- Okay O, Polymer, 40(14), 4117 (1999)