Polymer(Korea), Vol.39, No.1, 71-77, January, 2015
유기태양전지를 위한 작은 밴드갭 고분자의 합성과 광전특성
Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell
E-mail:,
초록
본 연구에서는 전자가 풍부한 구조단위(dithienosilole 및 benzodithiophene)와 전자가 부족한 구조단위 (difluorobenzothiadiazole)를 주사슬에 교대로 갖는 작은 밴드갭 공중합체를 Stille 짝지움 반응을 이용하여 합성하였다. 1H NMR을 통하여 각 단계별 화합물과 고분자의 구조를 확인하였다. GPC, TGA, UV-vis 분광분석기 및 cyclic voltammetry를 이용하여 합성한 고분자의 특성을 조사하였다. 합성한 공액고분자와 PC70BM을 1:1.5, 1:2, 1:3, 1:3.5 및 1:4의 중량비로 혼합하여 ITO/PEDOT:PSS/polymer:PC70BM/Al의 구조로 유기태양전지 소자를 제작하여 그 광전특성을 조사하였다. 고분자:PC70BM의 혼합비율이 1:3에서 최고 1.0%의 광전변환효율이 달성되었다. TEM 실험을
통하여 1:3 혼합비율에서 유기태양전지에 가장 적합한 나노규모로 상분리가 일어났으며, 다른 혼합비율에서는 고분자와 PC70BM의 뭉침현상에 기인하여 태양전지 특성이 낮아졌다.
We synthesized a low band gap alternating copolymer containing electron-rich units (i.e. dithienosiloles and benzodithiophenes) and electron-deficient units (i.e. ifluorobenzothiadiazoles) for high performance organic solar cells. The polymer was prepared by the Stille coupling reaction and characterized using 1H NMR, GPC, TGA, UV-visible absorption spectroscopy, and cyclic voltammetry. Solar cells were fabricated in a structure of ITO/PEDOT:PSS/polymer:
PC70BM/Al with five different blending ratios of polymer and PC70BM (1:1.5, 1:2, 1:3, 1:3.5 and 1:4 by weight ratio). The best efficiency was achieved from the 1:3 ratio of polymer and PC70BM in the photoactive layer, and TEM revealed that there is an optimal nanoscale phase separation between polymer and PC70BM in the 1:3 ratio blend film.
- Krebs FC, Sol. Energy Mater. Sol. Cells, 93(4), 394 (2009)
- Gunes S, Neugebauer H, Sariciftci NS, Chem. Rev., 107(4), 1324 (2007)
- Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A, Chem. Rev., 110(1), 3 (2010)
- Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
- Krebs FC, Tromholt T, Jørgensen M, Nanoscale, 2, 873 (2010)
- Bundgaard E, Hagemann O, Manceau M, Jorgensen M, Krebs FC, Macromolecules, 43(19), 8115 (2010)
- You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y, Nat. Commun., 4:1446 doi: 10.1038/ncomms2411 (2013)
- Scharber MC, Koppe M, Gao J, Cordella F, Loi MA, Denk P, Morana M, Egelhaaf HJ, Forberich K, Dennler G, Gaudiana R, Waller D, Zhu ZG, Shi XB, Brabec CJ, Adv. Mater., 22(3), 367 (2010)
- Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR, J. Am. Chem. Soc., 133(26), 10062 (2011)
- Chen HY, Hou JH, Hayden AE, Yang H, Houk KN, Yang Y, Adv. Mater., 22(3), 371 (2010)
- Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W, Angew. Chem. Int. Ed., 50, 2995 (2011)
- Li Z, Lu J, Tse SC, Zhou J, Du X, Tao Y, Ding J, J. Mater. Chem., 21, 3226 (2011)
- Schroeder BC, Huang ZG, Ashraf RS, Smith J, D'Angelo P, Watkins SE, Anthopoulos TD, Durrant JR, McCulloch I, Adv. Funct. Mater., 22(8), 1663 (2012)
- Huang Y, Guo X, Liu F, Huo LJ, Chen YN, Russell TP, Han CC, Li YF, Hou JH, Adv. Mater., 24(25), 3383 (2012)
- Wang XC, Sun YP, Chen S, Guo X, Zhang MJ, Li XY, Li YF, Wang HQ, Macromolecules, 45(3), 1208 (2012)
- Coffin RC, Peet J, Rogers J, Bazan GC, Nat. Chem., 1, 657 (2009)
- Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ, J. Am. Chem. Soc., 131(46), 16616 (2009)
- Park SH, Roy A, Beaupr S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ, Nat. Photonics, 3, 297 (2009)