화학공학소재연구정보센터
Clean Technology, Vol.20, No.3, 256-262, September, 2014
Cu/γ - Al2O3 촉매를 적용한 벤젠산화반응특성
Benzene Oxidation Characteristics of Cu/γ - Al2O3 Catalyst
E-mail:
초록
본 연구에서는 γ-Al2O3에 구리를 함침시킨 촉매를 고정층 반응기에 충전시킨 후 휘발성유기물질(VOCs)인 벤젠의 촉매산화 반응특성을 살펴보았다. 실험조건은 반응온도 200~500 ℃, 벤젠의 농도 400~650 ppm, 가스유입량 50~100 cc/min, 공간속도 7,500~22,500 hr-1의 범위로 적용하였다. BET분석, 주사전자현미경(SEM), 열천칭(TGA) 분석을 통해 제조된 촉매의 물성을 조사하였으며, 벤젠의 촉매산화반응의 전환율에 대하여 고찰하였다. 실험결과, 벤젠의 농도와 공간속도가 낮아질수록 벤젠 산화반응의 전환율은 증가함을 알 수 있었다. 벤젠의 촉매산화반응은 1차 균일반응으로 해석될 수 있었으며, 반응의 활성화에너지(Ea)는 17.2 kcal/mol, 빈도인자(A)는 1.33 × 106 sec-1이었다.
Catalytic oxidation characteristics of benzene as a VOC was investigated in a fixed bed flow reactor using Cu/γ-Al2O3 catalyst. The parametric tests were conducted at the reaction temperature range of 200~500 ℃, benzene concentration of 400~650 ppm, gas flow rate of 50~100 cc/min, and space velocity range of 7,500~22,500 hr-1. The property analyses by using the BET, SEM, TGA and the conversion of catalytic oxidation of benzene were examined. The experimental results showed that the conversion was increased with decreasing benzene concentration, gas flow rate and space velocity. Benzene oxidation reaction over Cu/γ-Al2O3 catalyst could be expressed as the first order homogeneous reaction of which the activation energy was 17.2 kcal/mol and frequency factor was 1.33 × 106 sec-1.
  1. Wark K, Warner CF, Air Pollution Its Origin and Control, Harper and Row, Publishers, pp. 1-2. (1981)
  2. Cooper CD, Alley FC, Air Pollution Control A Design Approach, Waveland Press, Inc., pp. 351-352, pp. 359-364. (1994)
  3. Ruddy EN, Carroll LA, Chem. Eng. Prog., 89(7), 28 (1993)
  4. Seinfeld JH, Atmosphere Chemistry and Physics of Air Pollution, John Wiley & Sons, New York, pp. 1-3. (1986)
  5. Darvert JG, The Chemistry of the Atmosphere-Its Impact on Global Change, Blackwell Scientific Pub., London, pp. 3. (1994)
  6. Moretti EC, Mukhopadhyay N, Chem. Eng. Prog., 89, 20 (1993)
  7. Palazzolo MA, “Control of Industrial VOC Emissions by Catalytic Incineration,” EPA 600-S2-84-118, Research Triangle Park NC, U. S. Environmental Protection Agency (1985)
  8. Jeon HJ, Catalysis an Introduction, Hanlimwon, 3rd ed., pp. 254-267. (1995)
  9. Hong SS, Lee GH, Lee GD, Korean J. Chem. Eng., 20(3), 440 (2003)
  10. Yim SD, Chang KH, Nam IS, HWAHAK KONGHAK, 39(3), 265 (2001)
  11. Kim HJ, Choi SW, Lee CS, Korean Chem. Eng. Res., 44(2), 193 (2006)
  12. Kim YJ, Hwang UY, Koo KK, Kim YR, Park JS, Yoon WL, Korean Chem. Eng. Res., 42(1), 38 (2004)
  13. Song KS, Seo YS, Jeong NJ, Yu SP, Ryu IS, Lee SN, Choi JJ, Jung JD, HWAHAK KONGHAK, 41(3), 397 (2003)
  14. Everaert K, Baeyens J, J. Hazard. Mater., 109(1-3), 113 (2004)
  15. Everaert K,“The Presentive Reduction and ‘end-of-pipe’ Removal of VOC and PCDD/F from Flue Gas,” Ph.D. Dissertation, Univ. of Leuven, Belgium (2003)
  16. Vannice MA, J. Catal., 37(3), 449 (1975)
  17. Palmer HB, Vannice MA, J. Chem. Technol. Biotech., 30(1), 205 (1980)
  18. Yoon JM, “Catalytic Oxidation Removal of Aromatic Hydrocarbon,” Master Thesis, Pohang Univ. (1997)
  19. Larsson PO, Andersson A, Wallenberg LR, Svensson B, J. Catal., 163(2), 279 (1996)
  20. Friedman RM, Freeman JJ, Lytle FW, J. Catal., 55(1), 10 (1978)
  21. Lippens BC, Steggerda JJ, “Physical and Chemical Aspects of Adsorbents and Catalysts,” BG Linsen, Academic Press, NY, pp. 171. (1970)
  22. Kim BS, Park YS, Korean Soc. Environ. Eng., 29, 444 (2007)
  23. Levenspiel O, “Chemical Reaction Engineering,” John Wiley & Sons, New York, pp. 108-110. (1972)