화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3834-3840, September, 2014
Hydrogenation of succinic acid to tetrahydrofuran over ruthenium-carbon composite catalysts: Effect of HCl concentration in the preparation of the catalysts
E-mail:
Ruthenium-carbon composite (Ru-C-X) catalysts were prepared by a single-step surfactant-templating method at different HCl concentration (X = 2, 3, 4, 5, 6, and 7 M) to control morphology of Ru-C-X catalysts, i.e., to control ruthenium dispersion. They were then applied to the liquid-phase hydrogenation of succinic acid to tetrahydrofuran (THF). Ru-C-X catalysts showed different ruthenium particle size depending on HCl concentration. In the reaction, yield for THF increased with decreasing average ruthenium particle size of the catalysts. Ruthenium particle size served as an important factor determining the catalytic performance of Ru-C-X in the hydrogenation of succinic acid to THF.
  1. Kuksal A, Klemm E, Emig G, Appl. Catal. A: Gen., 228(1-2), 237 (2002)
  2. Rocco JAFF, Lima JES, Lourenco VL, Batista NL, Botelho EC, Iha K, J. Appl. Polym. Sci., 126(4), 1461 (2012)
  3. Muller SP, Kucher M, Ohlinger C, Kraushaar-Czarnetzki B, J. Catal., 218(2), 419 (2003)
  4. Feng Y, Yin H, Wang A, Xie T, Jiang T, Appl. Catal. A: Gen., 425-426, 205 (2012)
  5. Zhang Q, Zhang Y, Li HT, Gao CG, Zhao YX, Appl. Catal. A: Gen., 466, 233 (2013)
  6. Wildberger MD, Maciejewski M, Grunwaldt JD, Mallat T, Baiker A, Appl. Catal. A: Gen., 179(1-2), 189 (1999)
  7. Choudhary H, Nishimura S, Ebitani K, Appl. Catal. A: Gen., 458, 55 (2013)
  8. Delhomme C, Weuster-Botz D, Kuhn FE, Green Chem., 11, 13 (2009)
  9. Cukalovic A, Stevens CV, Biofuels Bioprod. Bioref., 2, 505 (2008)
  10. Tapin B, Epron F, Especel C, Ly BK, Pinel C, Besson M, ACS Catal., 3, 2327 (2013)
  11. Rosi L, Frediani M, Frediani P, J. Org. Chem., 695, 1314 (2010)
  12. Luque R, Clark JH, Catal. Commun., 11, 928 (2010)
  13. Deshpande RM, Buwa VV, Rode CV, Chaudhari RV, Mills PL, Catal. Commun., 3, 269 (2002)
  14. Hong UG, Park HW, Lee J, Hwang S, Yi J, Song IK, Appl. Catal. A: Gen., 415-416, 141 (2012)
  15. Kim P, Joo JB, Kim W, Kim J, Song IK, Yi J, Catal. Lett., 112(3-4), 213 (2006)
  16. Kim H, Jung JC, Park DR, Baeck SH, Song IK, Appl. Catal. A: Gen., 320, 159 (2007)
  17. Hong UG, Park DR, Park S, Seo JG, Bang Y, Hwang S, Youn MH, Song IK, Catal. Lett., 132(3-4), 377 (2009)
  18. Hong UG, Kim JK, Lee J, Lee JK, Song JH, Yi J, Song IK, Appl. Catal. A: Gen., 469, 466 (2014)
  19. Liu N, Song H, Chen X, J. Mater. Chem., 21, 5345 (2011)
  20. Wang XQ, Liang CD, Dai S, Langmuir, 24(14), 7500 (2008)
  21. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 602 (1985)
  22. Lu S, Liu Y, Appl. Catal. B: Environ., 111-112, 492 (2012)
  23. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z, Carbon, 45, 1686 (2007)
  24. Lin ZZ, Okuhara T, Misono M, J. Phys. Chem., 92, 723 (1988)
  25. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR, J. Am. Chem. Soc., 133(28), 10878 (2011)
  26. Salgado JRC, Alcaide F, Alvarez G, Calvillo L, Lazaro MJ, Pastor E, J. Power Sources, 195(13), 4022 (2010)
  27. Bond GC, Hooper AD, Appl. Catal. A: Gen., 191(1-2), 69 (2000)
  28. Hara Y, Endou K, Appl. Catal. A: Gen., 239(1-2), 181 (2003)