화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 2806-2813, September, 2014
Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst
E-mail:
In this study, photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light/TiO2 photocatalysis. The TiO2 nanoparticles were used as photocatalysts which were immobilized on light expanded clay aggregate (LECA) granules as a new porous and light weight support. Maximum concentration of ammonia (975 mg/L) in petrochemical wastewater was selected, and to optimize the photocatalytic reaction, the effect of pH and catalyst dosage was investigated in two aerated and agitated reactor systems. Also, the morphology and chemical structure properties of the prepared catalysts were characterized by SEM and XRF analyses. The experimental results were shown that the performance of two types of aeration reactor systems was almost the same. Also, the ammonia removal efficiency was increased by increasing the pH value, and after solar light irradiation in three days, the solar reactor system lead degradation of ammonia in pH = 11-96.5%. The floating of photocatalyst can be reused at least three consecutive times with 14% decreases on the ammonia removal efficiency. The results suggest that the photocatalytic purification followed by solar photocatalytic reactor would be a promising method for the purification of chemical wastewater.
  1. Lee J, Park H, Choi W, Environmental Science & Technology, 36, 5462 (2002)
  2. Noyes WA, Military Problems with Aerosols and Nonpersistent Gases. Summary technical report of division 10, National Defense Research Committee, Washington, DC (1946)
  3. Zeng XC, Li YX, Technology of Phosphorus and Nitrogen Removal from Wastewater, China Architectural Industry Press, Beijing (1998)
  4. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W, Catal. Today, 147(1), 1 (2009)
  5. Ray AK, Beenackers AA, AIChE J., 43(10), 2571 (1997)
  6. Ray AK, Beenackers AACM, AIChE J., 44(2), 477 (1998)
  7. Herrmann JM, Disdier J, Pichat P, Malato S, Blanco J, Appl. Catal. B: Environ., 17(1-2), 15 (1998)
  8. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  9. Matthews RW, Journal of Catalysis, 111, 264 (1988)
  10. Turchi CS, Ollis DF, Journal of Catalysis, 122, 178 (1990)
  11. Wold A, Chemistry of Materials, 5, 280 (1993)
  12. Pelizzetti E, Minero C, Electrochimica Acta, 38, 47 (1993)
  13. Sclafani A, Palmisano L, Davi E, Journal of Photochemistry and Photobiology A: Chemistry, 56, 113 (1991)
  14. Fujishima A, Rao TN, Tryk DA, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1 (2000)
  15. Bilmes SA, Mandelbaum P, Alvarez F, Victoria NM, J. Phys. Chem. B, 104(42), 9851 (2000)
  16. Zhang LW, Fu HB, Zhu YF, Adv. Funct. Mater., 18(15), 2180 (2008)
  17. Song XF, Gao L, J. Am. Ceram. Soc., 90(12), 4015 (2007)
  18. Dijkstra MFJ, Michorius A, Buwalda H, Panneman HJ, Winkelman JGM, Beenackers AACM, Catal. Today, 66(2-4), 487 (2001)
  19. Karches M, Morstein M, von Rohr P, Pozzo RL, Giombi JL, Baltanas MA, Catal. Today, 72(3-4), 267 (2002)
  20. Martyanov IN, Klabunde KJ, J. Catal., 225(2), 408 (2004)
  21. Chen H, Lee SW, Kim TH, Hur BY, Journal of the European Ceramic Society, 26, 2231 (2006)
  22. Vohra MS, Tanaka K, Water Research, 37, 3992 (2003)
  23. Amiri H, Jaafarzadeh N, Ahmadi M, Martinez SS, Desalination, 272(1-3), 212 (2011)
  24. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53 (2007)
  25. Zendehzaban M, Sharifnia S, Hosseini SN, Korean J. Chem. Eng., 30(3), 574 (2013)
  26. Shavisi Y, Sharifnia S, Hosseini SN, Khadivi MA, J. Ind. Eng. Chem., 20(1), 278 (2014)
  27. Kato H, Kudo A, J. Phys. Chem. B, 105(19), 4285 (2001)
  28. Jin Z, Zhang X, Li Y, Li S, Lu G, Catalysis Communications, 8, 1267 (2007)
  29. Yao S, Li J, Shi Z, Particuology, 8, 272 (2010)
  30. Nikaido M, Furuya S, Kakui T, Kamiya H, Adv. Powder Technol., 20(6), 598 (2009)
  31. Wang C, Shi HS, Li Y, Appl. Surf. Sci., 257(15), 6873 (2011)
  32. Shi JW, Chen SH, Ye ZL, Wang SM, Wu P, Appl. Surf. Sci., 257(3), 1068 (2010)
  33. Zhu XL, Yuan CW, Bao YC, Yang JH, Wu YZ, J. Mol. Catal. A-Chem., 229(1-2), 95 (2005)
  34. Altomare M, Chiarello GL, Costa A, Guarino M, Selli E, Chem. Eng. J., 191, 394 (2012)
  35. Pretzer LA, Carlson PJ, Boyd JE, Journal of Photochemistry and Photobiology A: Chemistry, 200, 246 (2008)
  36. Wang DS, Xiao LB, Luo QZ, Li XY, An J, Duan YD, J. Hazard. Mater., 192(1), 150 (2011)
  37. Tuprakay S, Liengcharensit W, J. Hazard. Mater., 124(1-3), 53 (2005)
  38. Zan L, Tian LH, Liu ZS, Peng ZH, Appl. Catal. A: Gen., 264(2), 237 (2004)
  39. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219 (2004)
  40. Pan XY, Zhang N, Fu XZ, Xu YJ, Appl. Catal. A: Gen., 453, 181 (2013)
  41. Yap PS, Lim TT, Water Research, 46, 3054 (2012)
  42. Li L, Liu Y, J. Hazard. Mater., 161(2-3), 1010 (2009)
  43. Li M, Feng C, Zhang Z, Lei X, Chen N, Sugiura N, Microporous and Mesoporous Materials, 127, 161 (2010)
  44. Herrmann JM, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J, Appl. Catal. B: Environ., 35(4), 281 (2002)
  45. Banu JR, Anandan S, Kaliappan S, Yeom IT, Sol. Energy, 82(9), 812 (2008)
  46. Ghaly MY, Jamil TS, El-Seesy IE, Souaya ER, Nasr RA, Chem. Eng. J., 168(1), 446 (2011)
  47. Mori T, Suzuki J, Fujimoto K, Watanabe M, Hasegawa Y, Appl. Catal. B: Environ., 23(4), 283 (1999)