화학공학소재연구정보센터
Journal of Food Engineering, Vol.105, No.1, 144-148, 2011
Effects of moisture content and compression axis on mechanical properties of Shea kernel
Some mechanical properties of Shea kernel were investigated in this study. The kernels were divided into two categories sizes namely: small size kernel (SSK) and large size kernel (LSK) and the properties investigated were: rupture force, deformation at rupture and energy consumed at rupture. The tests were carried out at a deformation rate of 50 mm/min and four moisture content levels of 25.9%, 11.60%, 6.88%, 4.98% (db) for SSK and 11.19%, 6.21%, 5.78% and 2.77% (db) for LSK. The variations in these properties were observed considering the effects of moisture content and compression axes on them as the kernels were air-dried. Sample kernels were compressed along the orthogonal axes corresponding to major axes (length), intermediate axes (width) and minor axes (thickness) of Shea kernel. Some physical characteristics of Shea kernel such as dimensions, geometric mean diameter and mass were also evaluated. Results showed that generally, rupture force, deformation and energy at rupture decreased as moisture content decreased. The regression models that best fitted the relationships were polynomial functions of the second order. The highest and lowest forces for Shea kernel to rupture were those through the minor axis (thickness) and major axis (length) respectively. These properties are often required for the design of transportation, storage and grading/sorting machines and other post harvest machines for Shea kernel. (C) 2011 Elsevier Ltd. All rights reserved.