화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 903-910, May, 2014
Hydrolysis lignin: Electrochemical properties of the organic cathode material for primary lithium battery
E-mail:
Electrochemical energy production has been extensively used in large scale applications. At present, organic compounds are considered as efficient and environmentally friendly electrode materials. The paper describes the study of the possibility of using hydrolysis lignin as the lithium battery cathode material. Hydrolysis lignin features have been investigated by the impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The discharge performance of hydrolysis lignin-based lithium battery was investigated at room temperature using 1 M LiBF4 in gbutyrolacton electrolyte system. It was found that the specific capacity of hydrolysis lignin was equal to 450 mAh g 1 at a discharge current density of 25 mA/cm2. Two main voltage plateaus located at 1.8 and 1.1 V were observed. The chemical composition of cathode materials upon battery discharge down to 0.9 V was studied by the X-ray photoelectron spectroscopy and infrared spectroscopy. The suggestions on possible electrochemical reactions occurring in the lithium/hydrolysis lignin system were made on the basis of the products composition analysis. The results demonstrate the potential of hydrolysis lignin based batteries to be used as low-rate power sources.
  1. Logan DG, Pentzer J, Brennan SN, Reichard K, J. Power Sources, 212, 130 (2012)
  2. Aifantis KE, Hackney SA, Kumar RV, High Energy Density Lithium Batteries, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010. (2010)
  3. Huggins RA, Advanced Batteries: Materials Science Aspects, Springer Science + - Business Media, New York, 2009. (2009)
  4. Li J, Daniel C, Wood D, J. Power Sources, 196, 2452 (201)
  5. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  6. Chen HY, Armand M, Courty M, Jiang M, Grey CP, Dolhem F, Tarascon JM, Poizot P, J. Am. Chem. Soc., 131(25), 8984 (2009)
  7. Walker W, Grugeon S, Mentre O, Laruelle S, Tarascon JM, Wudl F, J. Am. Chem. Soc., 132(18), 6517 (2010)
  8. Yao M, Senoh H, Yamazaki S, Siroma Z, Sakai T, Yasuda K, J. Power Sources, 195(24), 8336 (2010)
  9. Milczarek G, Inganas O, Science, 335(6075), 1468 (2012)
  10. Opra DP, Gnedenkov SV, Sinebryukhov SL, Tsvetnikov AK, Sergienko VI, Bulletin of the Russian Academy of Science: Chemical, 2, 111 (2012)
  11. Linden D, Reddy TB, Handbook of Batteries, 3rd ed., The McGraw-Hill Inc., New York, 2001. (2001)
  12. Adler E, Wood Sci. Technol., 11, 169 (1977)
  13. Lam P, Yazami R, J. Power Sources, 153(2), 354 (2006)
  14. Dey AN, Thin Solid Films, 43, 131 (1977)
  15. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E, J. Power Sources, 68(1), 91 (1997)
  16. Novak O, Podhajecky P, J. Power Sources, 35, 235 (1991)
  17. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547 (2004)
  18. Kordesch K, Mautne WT, in: Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (Eds.), Encyclopedia of Electrochemical Power Sources, Elsevier B.V., Amsterdam, 2009, p. 43. (2009)
  19. Minakshi M, Ionescu M, Int. J. Hydrog. Energy, 35(14), 7618 (2010)
  20. Leroy S, Martinez H, Dedryvere R, Lemordant D, Gonbeau D, Appl. Surf. Sci., 253(11), 4895 (2007)
  21. Nanse G, Papirer E, Fiouxa P, Moguet F, Tressaud A, Carbon, 35, 175 (1997)
  22. Andersson AM, Henningson A, Siegbahn H, Jansson U, Edstrom K, J. Power Sources, 119-121, 522 (2003)
  23. Riviere JP, Pacaud Y, Cahoreau M, Thin Solid Films, 227, 44 (1993)
  24. Eriksson T, Gustafsson T, Thomas JO, in: Surampudi S, Marsh R (Eds.), Lithium Batteries, The Electrochemical Society Inc., New Jersey, 1999, p. 315. (1999)
  25. Bryngelsson H, Stjerndahl M, Gustafsson T, Edstrom K, J. Power Sources, 174(2), 970 (2007)
  26. Balbuena PB, Wang Y, Lithium-ion Batteries: Solid.Electrolyte Interphase, Imperial College Press, London, 2004. (2004)
  27. Barr TL, J. Phys. Chem., 82, 1801 (1978)
  28. Inari GN, Petrissans M, Dumarcay S, Lambert J, Ehrhardt JJ, Sernek M, Gerardin P, Wood Sci. Technol., 45, 369 (2011)
  29. Popescu CM, Tibirna CM, Vasile C, Appl. Surf. Sci., 256(5), 1355 (2009)
  30. Montplaisir D, Daneault C, Chabot B, Bioresources, 3, 1118 (2008)
  31. Dzhurinskii BF, Gati D, Sergushin NP, Nefedov VI, Salyn YV, Russ. J. Inorganic Chem., 20, 2307 (1975)
  32. Briggs D, Seah MP, Practical Surface Analysis, John Willey & Sons, New York, 1993 (1993)
  33. Wang X, Andrews L, Molecular Physics, 107, 739 (2009)
  34. Schweikert N, Hahn H, Indris S, Phys. Chem. Chem. Phys., 13, 6234 (2011)
  35. Chang YC, Sohn HJ, J. Electrochem. Soc., 147(1), 50 (2000)
  36. Dolle M, Orsini F, Gozdz AS, Tarascon JM, J. Electrochem. Soc., 148(8), A851 (2001)
  37. Popov BN, Zhang W, Darcy EC, White RE, J. Electrochem. Soc., 140, 3097 (1993)
  38. Fan J, Fedkiw PS, J. Power Sources, 72(2), 165 (1998)
  39. Osaka T, Momma T, Mukoyama D, Nara H, J. Power Sources, 205, 483 (2012)
  40. Barsoukov E, Macdonald JR, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons Inc., New Jersey, 2005. (2005)
  41. Gnedenkov SV, Sinebryukhov SL, Sergienko VI, J. Electroanal. Chem., 42, 197 (2006)