Polymer(Korea), Vol.38, No.2, 180-187, March, 2014
제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석
Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization
E-mail:
초록
그래핀옥사이드(GO)와 전도성 고분자(PPy, PANI, PEDOT)로 이루어진 나노복합체를 제자리 화학중합을 통하여 제조하였으며, 전도성 고분자의 함량 증가에 따른 특성변화를 분석하였다. GO에 존재하는 반응성 그룹 그리고 GO-poly(4-styrene sulfonic acid)(PSSA) 복합체 및 세 종류 나노복합체에서 고분자의 존재를 확인하였으며, GO와 PSSA 또는 전도성 고분자 사이의 상호작용이 제안되었다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT 함량이 증가함에 따라 라만 스펙트럼의 ID/IG 값이 감소하였으며 특성 피크 위치도 크게 변화하였다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT이 GO-PSSA 층을 박리시켜 그들 분자층 사이로 내부 삽입되어 있는 형태를 취하며 GO 또는 GO-PSSA 분자층이 열차단층으로 작용하게 되어 나노복합체는 GO 또는 GO-PSSA보다 열안정성이 향상되었다. 또한 GO-PSSA와 PEDOT 사이에 형성된 균일한 hybridization 모폴로지를 확인하였으며, GO-PSS/PEDOT 나노복합체의 경우 가장 우수한 전기전도성을 보여 주었다.
Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene
sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of ID/IG regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.
- Lee T, Yum T, Park B, Sharma B, Song HK, Kim BS, J. Mater. Chem., 22, 21092 (2012)
- Tung TT, Feller JF, Kim T, Kim H, Yang WS, Suh KS, J. Polym. Sci. A: Polym. Chem., 50(5), 927 (2012)
- Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Kong ESW, Wei H, Zhang Y, J. Mater. Chem., 22, 22488 (2012)
- Qian T, Wu S, Shen J, Chem. Commun., 49, 4610 (2013)
- Zhao ZQ, Chen X, Yang Q, Liu JH, Huang XJ, Chem. Commun., 48, 2180 (2012)
- Yin B, Liu Q, Yang L, Wu X, Liu Z, Hua Y, Yin S, Chen Y, J. Nanosci. Nanotechnol., 10, 1934 (2010)
- Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJG, Chem. Commun., 47, 2592 (2011)
- Konwer S, Boruah R, Dolui SK, J. Electronic Mater., 40, 2248 (2011)
- Wang H, Hao Q, Yang X, Lu L, Wang X, ACS Appl. Mater. Interfaces, 2, 821 (2010)
- Zhang K, Zhang LL, Zhao XS, Wu J, Chem. Mater., 22, 1392 (2010)
- Wang H, Hao Q, Yang X, Lu L, Wang X, Electrochem. Commun., 11, 1158 (2009)
- Bai H, Sheng K, Zhang P, Li C, Shi G, J. Mater. Chem., 21, 18653 (2011)
- Rana U, Malik S, Chem. Commun., 48, 10862 (2012)
- Saner B, Gursel SA, Yurum Y, Fuller. Nanotub. Carbon Nanostruct., 21, 233 (2013)
- Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
- Trang LKH, Tung TT, Kim TY, Yang WS, Kim H, Suh KS, Polym. Int., 61, 93 (2012)
- Tung NT, Khai TV, Jeon M, Lee YJ, Chung H, Bang JH, Sohn D, Macromol. Res., 19(2), 203 (2011)
- Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW, J. Power Sources, 196(14), 5990 (2011)
- Joo YT, Jung KH, Kim MJ, Kim Y, J. Appl. Polym. Sci., 127(3), 1508 (2013)
- Joo YT, Jung KH, Kim Y, Polym.(Korea), 35(5), 395 (2011)
- Sheng K, Shi G, Synt. Met., 160, 1354 (2010)
- Grinou A, Yun YS, Jin HJ, Macromol. Res., 20(1), 84 (2012)
- Jeong HK, Jin MH, An KH, Lee YH, J. Phys. Chem. C, 113, 13060 (2009)
- Xu LQ, Liu YL, Neoh KG, Kang ET, Fu GD, Macromol. Rapid Commun., 32(8), 684 (2011)
- Basavaraja C, Kim WJ, Thinh PX, Huh DS, Polym. Compos., 32, 2076 (2011)