화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.2, 160-164, February, 2014
Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment
E-mail:,
A strategy is reported that combines assembled nanostructures and solvent vapor treatment to manipulate the gas permeability of graft copolymer membranes. The VC-g-POEM graft copolymer consists of poly(vinyl chloride) (PVC) main chains and poly(oxyethylene methacrylate) (POEM) side chains, and was synthesized via atom transfer radical polymerization (ATRP). When the PVC-g-POEM membrane was treated with a good solvent vapor such as acetone, the CO2 permeability increased from 107 to 145 Barrer (1 Barrer=10^(-10) cm3(STP)·cm·cm^(-2)·s^(-1)·cmHg^(-1)), which is approximately a 36% improvement compared to an untreated sample. However, the permeability was significantly reduced from 107 to 45 and 38 Barrer upon being treated with a selective (methanol) or poor solvent (hexane). The structure-property relation of the solvent-vapor-treated membranes was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) analysis.
  1. Du NY, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD, Nat. Mater., 10(5), 372 (2011)
  2. Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48(10), 4638 (2009)
  3. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ, Science, 318, 254 (2007)
  4. Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S, Energy Environ. Sci, 6, 539 (2013)
  5. Xue B, Li X, Gao L, Gao M, Wang Y, Jiang L, J. Mater. Chem., 22, 10918 (2012)
  6. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
  7. Muldoon JG, Pintauro PN, Wysick RJ, Lin J, Orme CJ, Stewart FF, J. Membr. Sci., 334(1-2), 74 (2009)
  8. Kim DJ, Woo SM, Nam SY, Macromol. Res., 20(10), 1075 (2012)
  9. Lee JH, Hong J, Kim JH, Kang YS, Kang SW, Chem. Commun., 48, 5298 (2012)
  10. Lee JH, Chae IS, Song D, Kang YS, Kang SW, Sep. Purif. Technol., 112, 49 (2013)
  11. Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH, J. Membr. Sci., 443, 51 (2013)
  12. Shao L, Chung TS, Wensley G, Goh SH, Pramoda KP, J. Membr. Sci., 244(1-2), 77 (2004)
  13. Recio R, Palacio L, Pradanos P, Hernandez A, Lozano AE, Marcos A, de la Campa JG, de Abajo J, J. Membr. Sci., 293(1-2), 22 (2007)
  14. Buonomenna MG, Yave W, Golemme G, RSC Adv., 2, 10745 (2012)
  15. Car A, Stropnik C, Yave W, Peinemann KV, Adv. Funct. Mater., 18(18), 2815 (2008)
  16. Gu YY, Lodge TP, Macromolecules, 44(7), 1732 (2011)
  17. Zhang MF, Russell TP, Macromolecules, 39(10), 3531 (2006)
  18. Kim YW, Choi JK, Park JT, Kim JH, J. Membr. Sci., 313(1-2), 315 (2008)
  19. Orofino AB, Camezzana MF, Galante MJ, Oyanguren PA, Zucchi IA, Nanotechnology, 23, 115604 (2012)
  20. Ahn SH, Seo JA, Kim JH, Ko Y, Hong SU, J. Membr. Sci., 345(1-2), 128 (2009)
  21. Ahn SH, Park JT, Kim JH, Ko Y, Hong SU, Macromol. Res., 19(11), 1195 (2011)
  22. Ahn SH, Park JT, Koh JK, Roh DK, Kim JH, Chem. Commun., 47, 5882 (2011)
  23. Ahn SH, Park JT, Koh JK, Roh DK, Kim JH, Chem. Commun., 47, 5882 (2011)
  24. Ahn SH, Chi WS, Park JT, Koh JK, Roh DK, Kim JH, Adv. Mater., 24(4), 519 (2012)
  25. Bicerano J, Prediction of Polymer Properties, Marcel Dekker, Inc., New York, 1996 (Note that the solubility parameter of POEM was calculated using the group contribution method).
  26. Trapa PE, Won YY, Mui SC, Olivetti EA, Huang BY, Sadoway DR, Mayes AM, Dallek S, J. Electrochem. Soc., 152(1), A1 (2005)
  27. Kim J, Koh JK, Kim B, Ahn SH, Ahn H, Ryu DY, Kim JH, Kim E, Adv. Funct. Mater., 21(24), 4633 (2011)