Applied Chemistry for Engineering, Vol.24, No.4, 375-381, August, 2013
니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구
A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst
E-mail:
초록
상업용 니켈 촉매를 사용하여 메탄과 천연가스의 수증기 개질 반응을 각각 수행하였다. 수증기 개질 반응의 변수는 반응 온도와 반응물의 분압이었다. Kinetic data로부터 Power law rate model과 Langmuir-Hinshelwood model의 매개변수를 구하였다. 순수한 메탄을 수증기 개질 반응 실험의 원료로 사용한 경우에는 Langmuir-Hinshelwood model 식은 물론이고 Power law rate model을 사용하여 반응 속도를 적절하게 표현할 수 있었다. 그러나 천연가스 중의 메탄의 수증기 개질 반응 속도를 표현하는데 있어서는 Power law rate model보다 Langmuir-Hinshelwood model이 훨씬 더 적합한 것을 확인하였다. 이러한 거동은 천연가스 중에 포함되어있는 메탄, 에탄, 프로판 및 부탄이 동일한 촉매 활성점에 경쟁적으로 흡착하기 때문으로 해석할 수 있었다.
Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.
- Hoang DL, Chan SH, Ding OL, Chem. Eng. J., 112(1-3), 1 (2005)
- Roh HS, Lee DK, Koo KY, Jung UH, Yoon WL, Int. J. Hydrog. Energy., 35, 1613 (2010)
- Schadel BT, Duisberg M, Deutschmann O, Catal. Today., 142, 42 (2009)
- Basini L, Aasberg-Petersen K, Guarinoni A, Ostberg M, Catal. Today, 64(1-2), 9 (2001)
- Q A, Wang S, Ni C, Wu D, Int. J. Hydrog. Energy., 32, 981 (2007)
- Arbag H, Yasyerli S, Yasyerli N, Dogu C, Int. J. Hydrog.Energy., 35, 2296 (2010)
- Aboudheir A, Akande A, Idem R, Dalai A, Int. J. Hydrog.Energy., 31, 752 (2006)
- Heinzel A, Vogel B, Hubner P, J. Power Sources, 105(2), 202 (2002)
- Zhang QJ, Li XH, Fujimoto K, Asami K, Appl. Catal. A: Gen., 288(1-2), 169 (2005)
- Wang Y, Yoshiba F, Kawase M, Watanabe T, Int. J. Hydrog.Energy., 34, 3885 (2009)
- Graf PO, Mojet BL, van Ommen JG, Lefferts L, Appl. Catal. A: Gen., 332(2), 310 (2007)
- Li Y, Wang XX, Xie C, Song CS, Appl. Catal. A: Gen., 357(2), 213 (2009)
- Jeong H, Kang M, Appl. Catal. B: Environ., 95(3-4), 446 (2010)
- Roh HS, Koo KY, Jung UH, Yoon WL, Curr. Appl.Phys., 10, S37 (2010)
- Gallucci F, Paturzo L, Basile A, Int. J. Hydrog. Energy., 29, 611 (2004)
- Matsumura Y, Nakamori T, Appl. Catal. A: Gen., 258(1), 107 (2004)
- Ramirez-Cabrera E, Atkinson A, Chadwick D, Appl. Catal. B: Environ., 47(2), 127 (2004)
- Roh HS, Jun KW, Park SE, Appl. Catal. A: Gen., 251(2), 275 (2003)
- Dong WS, Roh HS, Jun KW, Park SE, Oh YS, Appl. Catal. A: Gen., 226(1-2), 63 (2002)
- Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI, J. Mol. Catal. A-Chem., 181(1-2), 137 (2002)
- Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Clay Sci., 43, 49 (2009)
- Seong M, Lee K, Cho JH, Lee YC, Jeon JK, Clean Technol., 19(1), 51 (2013)
- Jin W, Gu X, Li S, Huang P, Xu N, Shi J, Chem. Eng. Sci., 55(14), 2617 (2000)
- Satterfield CN, Heterogeneous Catalysis in Industrial Practice, 2nd ed., McGraw-Hill, New York (1991)