화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.3, 813-818, May, 2013
Characterization of methanol-tolerant Pd-WO3 and Pd-SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells
E-mail:
Palladium (Pd) catalysts containing nanosized metal oxides, tungsten oxide (WO3) and tin oxide (SnO2), supported on carbon black (Pd.MOx/C) were synthesized, and the effect of the metal oxide on the oxygen reduction reaction (ORR) in a direct methanol fuel cell (DMFC) was investigated. The SEM images showed that the Pd nanoparticles were highly dispersed on the carbon black, and the metal oxide particles were also distributed well. Pd/C and Pd-WO3/C catalysts as cathode materials for the ORR in DMFCs showed activity similar to or better than that of Pt/C, whereas Pd.SnO2/C showed no improvement in catalytic activity.
  1. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95 (2006)
  2. Neburchilov V, Wang VH, Zhang J, Electrochemistry Communications., 9, 1788 (2007)
  3. Friedrich KA, Geyzers KP, Linke U, Stimming U, Stumper J, J. Electroanal. Chem., 402(1-2), 123 (1996)
  4. Vracar LM, Sepa DB, Damjanovic A, Journal of the Electrochemical Society., 133, 1835 (1986)
  5. Lamy C, Electrochimica Acta., 29, 1581 (1984)
  6. Lukaszewski M, Czerwinski A, J. Electroanal. Chem., 589(1), 87 (2006)
  7. Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA, Electrochim. Acta, 50(24), 4674 (2005)
  8. Mustain WE, Kepler K, Prakash J, Electrochim. Acta, 52(5), 2102 (2007)
  9. Zhang L, Lee K, Zhang JJ, Electrochim. Acta, 52(9), 3088 (2007)
  10. Wang WM, Zheng D, Du C, Zou ZQ, Zhang XG, Xia BJ, Yang H, Akins DL, J. Power Sources, 167(2), 243 (2007)
  11. Mustain WE, Prakash J, J. Power Sources, 170(1), 28 (2007)
  12. Kim IT, Lee HK, Shim J, Journal of Nanoscience and Nanotechnology., 8, 5302 (2008)
  13. Wang M, Guo DJ, Li HL, Journal of Solid State Chemistry., 178, 1996 (2005)
  14. Pourbaix M, Atlas of Electrochemical Equilibria, National Association of Corrosion Engineers, Texas, 280 (1974)
  15. Kim IT, Choi M, An JA, Lee HK, Shim J, Journal of Nanoscience and Nanotechnology., 10, 3542 (2010)
  16. Uhm S, Lee JK, Chung ST, Lee JY, J. Ind. Eng. Chem., 14(4), 493 (2008)
  17. Raghuveer V, Viswanathan B, J. Power Sources, 144(1), 1 (2005)
  18. Xu CW, Shen PK, J. Power Sources, 142(1-2), 27 (2005)
  19. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW, J. Power Sources, 156(2), 345 (2006)
  20. Shao MH, Sasaki K, Adzic RR, J. Am. Chem. Soc., 128(11), 3526 (2006)
  21. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR, Langmuir, 22(25), 10409 (2006)
  22. Xiao L, Zhuang L, Liu Y, Lu J, Abruna HD, Journal of the American Chemical Society., 131, 602 (2008)
  23. Hogarth MP, Ralph TT, Platinum Metals Review., 46, 146 (2002)
  24. Wang X, Waje M, Yan YS, J. Electrochem. Soc., 151(12), A2183 (2004)
  25. Li HQ, Sun GQ, Jiang Q, Zhu MY, Sun SG, Xin Q, J. Power Sources, 172(2), 641 (2007)
  26. Serov AA, Cho SY, Han S, Min M, Chai G, Nam KH, Kwak C, Electrochemistry Communications., 9, 2041 (2007)
  27. Kulesza PJ, Grzybowska B, Malik MA, Galkowski MT, J. Electrochem. Soc., 144(6), 1911 (1997)
  28. Kulesza PJ, Faulkner LR, Journal of the American Chemical Society., 110, 4905 (1988)
  29. Savadogo O, Essalik A, J. Electrochem. Soc., 141(8), L92 (1994)
  30. Essalik A, Savadogo O, Ajersch F, J. Electrochem. Soc., 142(5), 1368 (1995)
  31. Park KW, Sung YE, J. Ind. Eng. Chem., 12(2), 165 (2006)
  32. Zhang ZH, Wang XG, Cui ZM, Liu CP, Lu TH, Xing W, J. Power Sources, 185(2), 941 (2008)
  33. Fernandez JL, Raghuveer V, Manthiram A, Bard AJ, J. Am. Chem. Soc., 127(38), 13100 (2005)
  34. Mustain WE, Kepler K, Prakash J, Electrochemistry Communications., 8, 406 (2006)
  35. Li W, Haldar P, Electrochemistry Communications., 11, 1195 (2009)
  36. Tang Y, Zhang H, Zhoung H, Ma Y, International Journal of Hydrogen Energy., 36, 725 (2011)
  37. Shen PK, Tseung AC, J. Electrochem. Soc., 141(11), 3082 (1994)
  38. Kulesza PJ, Faulkner LR, Journal of Electroanalytical Chemistry., 259, 81 (1989)
  39. Tseung ACC, Chen KY, Catal. Today, 38(4), 439 (1997)
  40. McLeod EJ, Birss VI, Electrochim. Acta, 51(4), 684 (2005)
  41. Zhang X, Zhu H, Guo Z, Wei Y, Wang F, International Journal of Hydrogen Energy., 35, 8841 (2010)
  42. Higuchi E, Miyata K, Takase T, Inoue H, J. Power Sources, 196(4), 1730 (2011)
  43. Choi M, Han C, Kim IT, An JC, Lee JJ, Lee HK, Shim J, Journal of Nanoscience and Nanotechnology., 11, 838 (2011)
  44. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ, J. Power Sources, 102(1-2), 172 (2001)
  45. Xiong L, Manthiram A, Electrochim. Acta, 49(24), 4163 (2004)
  46. Fugane K, Mori T, Ou DR, Suzuki A, Yoshikawa H, Masuda T, Uosaki K, Yamashita Y, Ueda S, Kobayashi K, Okazaki N, Matolinova I, Matolin V, Electrochim. Acta, 56(11), 3874 (2011)
  47. Saha MS, Banis MN, Zhang Y, Li RY, Sun XL, Cai M, Wagner FT, J. Power Sources, 192(2), 330 (2009)
  48. Lee KS, Park IS, Cho YH, Jung DS, Jung N, Park HY, Sung YE, J. Catal., 258(1), 143 (2008)
  49. Nakada M, Ishihara A, Mitsushima S, Kamiya N, Ota K, Electrochem. Solid State Lett., 10(1), F1 (2007)