화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 493-498, July, 2008
Effect of anode diffusion media on direct formic acid fuel cells
E-mail:
The effect of the anode diffusion media on the cell performance and mass transport in a direct formic acid fuel cell (DFAFC) has been characterized. Based on electrochemical impedance spectroscopy along with the cell performance tests of the fuel cell, it was found that, depending on the properties of the diffusion media, different molar concentrations of formic acid were required to avoid mass transfer limitation, i.e. maintain a sustained performance. By measuring the external contact angle, the wettability of the diffusion media was investigated in order to estimate the transport properties of formic acid through the diffusion media. Unlike the direct methanol fuel cell, the DFAFC suffers from severe mass transport limitations in more hydrophobic anode diffusion media. As an alternative to higher concentration operations, mixed fuel systems have been suggested to alleviate the IR drops and promote the performance without any voltage loss due to fuel crossover and membrane dehydration at relatively low-current density. Accordingly, not only favorable combinations of the hydrophobicity for gas product transport and the hydrophilicity for formic acid transport within the porous layer are necessary but also the proper choice of fuel concentration and type is needed to obtain the required performance for a simplified system or for higher fuel efficiency.
  1. Larminie J, Dicks A, Fuel Cell Systems Explained, 2nd ed., JohnWiley & Sons, 2003
  2. Ren XM, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(1), L12 (1996)
  3. Uhm S, Chung ST, Lee J, Electrochem. Commun., 9, 2027 (2007)
  4. Miesse CM, Jung WS, Jeong KJ, Lee JK, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Hong SA, J. Power Sources, 162(1), 532 (2006)
  5. Giorgi L, Antolini E, Pozio A, Passalacqua E, Electrochim. Acta, 43(24), 3675 (1998)
  6. Antolini E, Giorgi L, Pozio A, Passalacqua E, J. Power Sources, 77(2), 136 (1999)
  7. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M, J. Appl. Electrochem., 30(6), 641 (2000)
  8. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M, J. Power Sources, 86(1-2), 250 (2000)
  9. Lin GY, Van Nguyen T, J. Electrochem. Soc., 152(10), A1942 (2005)
  10. Argyropoulos P, Scott K, Taama WM, J. Appl. Electrochem., 29(6), 661 (1999)
  11. Neergat M, Shukla AK, J. Power Sources, 104(2), 289 (2002)
  12. Lim C, Wang CY, J. Power Sources, 113(1), 145 (2003)
  13. Oedegaard A, Hebling C, Schmitz A, Moller-Holst S, Tunold R, J. Power Sources, 127(1-2), 187 (2004)
  14. Pan YH, J. Power Sources, 161(1), 282 (2006)
  15. Ren XM, Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 147(2), 466 (2000)
  16. Jung I, Kim D, Yun Y, Chung S, Lee H, Tak Y, Electrochim. Acta, 50(2-3), 607 (2004)
  17. Prabhuram J, Zhao TS, Yang H, J. Electroanal. Chem., 578(1), 105 (2005)
  18. Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG, J. Power Sources, 168(1), 119 (2007)
  19. Sukhno IV, Buzko VY, Panyushkin VT, Dzhioev TE, Kovaleva IA, J. Struct. Chem., 44, 686 (2003)
  20. Aloisio S, Hintze PE, Vaida V, J. Phys. Chem. A, 106(2), 363 (2002)
  21. Lim C, Wang CY, Electrochim. Acta, 49(24), 4149 (2004)
  22. Mathias M, Roth J, Fleming J, Lehnert W, in: Vielstich W, Lamm HA, Gasteiger A (Eds.), Handbook of Fuel Cells Fundamentals, Technology and Applications, vol. 3, Wiley, 2003, p. 1
  23. Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655 (2002)
  24. Scott K, Taama WM, Argyropoulos P, J. Appl. Electrochem., 28(12), 1389 (1998)
  25. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587 (1996)
  26. Oedegaard A, J. Power Sources, 157(1), 244 (2006)