화학공학소재연구정보센터
Clean Technology, Vol.19, No.1, 44-50, March, 2013
탄소 피복된 SnO2-SiO2 음극활물질의 전기화학적 특성
Electrochemical Characteristics of Carbon Coated SnO2-SiO2 Anode Materials
E-mail:
초록
리튬이온전지에서 음극활물질의 저장용량을 증가시키기 위하여 주석산화물에 대한 연구가 많이 수행되고 있다. 주석산화물은 기존의 흑연 음극활물질보다 충방전 용량이 높다. 하지만 충방전이 진행되는 동안에 부피팽창률이 높아서 활물질이 파괴되는 현상이 나타나므로 과도한 비가역용량이 문제가 된다. 이를 해결하기 위하여 물리적 완충역할을 하는 물질이 첨가된 복합산화물을 제조하였다. SnO2-SiO2 복합산화물을 솔-젤법을 이용하여 제조하였다. 10 vol% 프로필렌기체를 이용하여 탄소피복을 하여 전기전도성을 증가시켰다. TG/DTA, XRD, SEM과 FT-IR을 이용하여 제조된 물질의 물성을 분석하였으며, CR2032 코인셀을 제조하여 전기화학적인 특성을 조사하였다. 300 ℃로 열처리한 후에 탄소피복한 SnO2-SiO2 활물질의 전기화학적 특성이 가장 우수하였다.
Tin-based materials for lithium ion battery have been proposed as new anode candidates owing to their higher specific capacity and relatively high lithium insertion potential. Tin-based materials have been extensively studied as possible replacements for carbon anodes in lithium ion batteries. However, the large volume expansion results in severe particle cracking with loss of electrical contact, giving irreversible capacity losses which prevent the widespread use of tin-based materials in lithium batteries. So remaining studies of tin-based materials are alleviating volume expansion and improving cycle performance. In this work, SnO2-SiO2 composites were manufactured with sol-gel method to overcome their volume expansion. Carbon was coated with 10 vol% propylene gas. The characteristics of active material and the effect of heat treatment were investigated with TG/DTA, XRD, SEM and FT-IR. Electrochemical characteristics of these composites were measured with CR2032 type coin cells. Carbon coated SnO2-SiO2 at 300 ℃ heat treatment showed the best electrochemical performance.
  1. Park JK, Principles and Applicaions of Lithium Secondary Batteries, Hongrung Publishing Company, Seoul, 115 (2010)
  2. Uchiyama H, Hosono E, Honma I, Zhou H, Imai H, Electrochem. Commun., 10, 52 (2008)
  3. Huang H, Kelder EM, Chen L, Schoonman J, J. Power Sources, 81-82, 362 (1999)
  4. Read J, Foster D, Wolfenstine J, Behl W, J. Power Sources, 96(2), 277 (2001)
  5. Courtney IA, Dahn JR, J. Electrochem. Soc., 144(6), 2045 (1997)
  6. Kim WT, Lee EK, Cho BW, Lee JK, Na BK, Korean Chem. Eng. Res., 46(6), 1119 (2008)
  7. Tamura N, Ohshita R, Fujimoto M, Kamino M, Fujitani S, J. Electrochem. Soc., 150(6), A679 (2003)
  8. Winter M, Besenhard JO, Electrochim. Acta, 45(1-2), 31 (1999)
  9. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ, Prog. Mater. Sci., 50, 881 (2005)
  10. Kim HS, Chung KY, Cho BW, Bull. Korean Chem. Soc., 29, 1965 (2008)
  11. Kim HS, Chung KY, Cho BW, J. Power Sources, 189(1), 108 (2009)
  12. Kirszensztejn P, Kawalko A, Tolinka A, Przekop R, J.Porous Mat., 18, 241 (2011)
  13. Cho SM, Kim YT, Seo YG, Yoon HD, Im YM, Yoon DH, J. Korean Ceramic. Soc., 39, 479 (2002)
  14. Albonetti S, Blanchard G, Burattin P, Cavani F, Masetti S, Trifiro F, Catal. Today, 42(3), 283 (1998)
  15. Vu BK, Song MB, Park SA, Lee Y, Ahn IY, Suh YW, Suh DJ, Kim WI, Koh HL, Choi YG, Shin EW, Korean J. Chem. Eng., 28(2), 383 (2011)