화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.2, No.1, 47-55, March, 1991
수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구(II)
A Study on the Regeneration of Ni Catalyst for Hydrogenation(II)
초록
탄소침적된 수소첨가반응용 Ni 촉매의 활성재생에 관하여 연구하였다. 침적된 탄소는 여러 가지 농도의 산소로 산화시켜 제거하였으며, 촉매의 활성은 아닐린 수소첨가반응을 model 반응으로 하여 측정하였다. 탄소침적된 촉매를 산화처리할 경우 처리온도가 증가함에 따라 표면적이 증가하였다. 감소하는현상을 보였으며, 최대 표면적을 나타내는 처리온도는 처리 산소농도가 감소함에 따라 증가하였다. 처리 산소농도가 높을수록 침적탄소의 산화에 의한 반응열로 인하여 Ni 입자의 소결현상 및 담체의 기공감소가 심하게 나타났다. 5 % 산소로 처리한 촉매의 경우, 촉매의 활성이 약 90% 까지 회복되었으나 20% 산소로 처리한 촉매의 경우, 활성의 회복을 기대할 수 없었다. 5 % 산소로 재생처리할 경우, 촉매의 활성은 산화처리 시간이 증가할수록 증가하였으나, 1 시간 이후에는 거의 일정하였다.
Regeneration of carbon-deposited Ni catalyst used for hydrogenation reaction was studied. Deposited carbon was removed by oxidation with various concentrations of oxygen. Activity of the catalysts was tested on aniline hydrogenation as a model reaction. When a carbon-deposited catalyst was treated under oxygen atmosphere, the specific surface area of the catalyst increased and then decreased with the increase of treatment temperature. The treatment temperature which gives maximum specific surface area increased with the decrease of oxygen concentration. Pore size of the support was decreased and sintering of nickel particles was more significant with the increase of oxygen concentration. The catalyst treated under 5 % oxygen concentration recovered its catalytic activity up to 90 % of the initial value, but the treatment under 20 % oxygen concentration gave no significant increase of the catalytic activity. Catalytic activity increased with treatment time when the catalyst was treated under 5 % oxygen concentration, but nearly constant after 1 hour.
  1. Butt JB, Catalysis, 6, 1 (1984)
  2. Bartholomew CH, Chem. Eng., 12, 96 (1984)
  3. Froment GF, "Catalyst Deactivation," B. Delmon and G.F. Froment (eds.), pp. 1-19, Elsevier Amsterdam (1980)
  4. Beuther H, Larson OA, Perrotta AJ, "Catalyst Deactivation," B. Delmon and G.F. Froment (eds.), pp. 271-282, Elsevier, Amsterdam (1980)
  5. Trimm DL, Catal. Rev.-Sci. Eng., 16, 155 (1977)
  6. McCarty GJ, Wise H, J. Catal., 57, 106 (1979)
  7. Carrozza J, J. Catal., 110, 74 (1988) 
  8. Ellingham RE, Garrett J, "Applied Industrial Catalysis," B.E. Leach(ed.) Vol. 3, p. 25, Academic Press, New York (1984)
  9. 김상돈, "석탄에너지 변환기술," 민음사, 서울 (1985)
  10. Wen WY, Catal. Rev.-Sci. Eng., 22, 1 (1980)
  11. Nelson N, Levy RB, J. Catal., 58, 485 (1979) 
  12. Katzer JR, Sivasubramanian R, J. Catal., 29, 155 (1979) 
  13. Ledoux MJ, Puges PE, Maire G, J. Catal., 76, 285 (1982) 
  14. Cocchetto JF, Satterfield CN, Ind. Eng. Chem. Process Des. Dev., 20, 49 (1981) 
  15. Finiels A, Geneste P, Moulinas C, Olive JL, Appl. Catal., 22, 257 (1986) 
  16. 박포원, 공학석사학위논문, 서울대학교 (1989)
  17. Lowell S, "Introduction to Powder Surface Area," pp. 65-73, John Wiley & Sons, New York (1979)
  18. Colle KS, Kim K, Wold A, Fuel, 62, 155 (1983)