화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.2, 670-676, March, 2013
Thermal degradation of rice straw fibers: Global kinetic modeling with isothermal thermogravimetric analysis
E-mail:
Thermal degradation behavior of rice straw fibers under isothermal heating conditions was studied. The data were modeled by considering the fiber as one pseudo-component using the Ma´ lek method. The kinetic model with reaction order n > 1 [i.e., RO(n > 1) = (1 - α)n] described the degradation process of rice straw fiber fairly well in a temperature range up to about 265 ℃. The kinetic parameters used include activation energy of 116 ± 5 kJ/mol, reaction order of 3.0 ± 0.2, and logarithmic value of preexponential factor [ln A] of 18.7 ± 0.1 ln s^(-1). The model obtained can be used to aid the development of straw fiber-engineering plastic composites.
  1. Bridgwater AV, Meier D, Radlein D, Organic Geochemistry., 30, 1479 (1999)
  2. Yaman S, Energy Conv. Manag., 45(5), 651 (2004)
  3. Nassar MM, Energy Sources, 21(1-2), 131 (1999)
  4. Calvo LF, Otero M, Jenkins BM, Moran A, Garcia AI, Fuel Process. Technol., 85(4), 279 (2004)
  5. Simkovic I, Csomorova K, J. Appl. Polym. Sci., 100(2), 1318 (2006)
  6. Mu¨ ller-Hagedorn A, Bockhorn H, Journal of Analytical and Applied Pyrolysis., 79(1-2), 136 (2007)
  7. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T, Thermochim. Acta, 355(1-2), 125 (2000)
  8. Maciejewski M, Thermochim. Acta, 355(1-2), 145 (2000)
  9. Vyazovkin S, Thermochim. Acta, 355(1-2), 155 (2000)
  10. Ma´ lek J, Mitsuhashi T, Criado JM, Journal of Materials Research., 16(6), 1862 (2001)
  11. Ma´ lek J, Thermochimica Acta., 200, 257 (1992)
  12. Montserrat S, Malek J, Colomer P, Thermochim. Acta, 313(1), 83 (1998)
  13. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ, Polymer Degradation and Stability., 93(1), 90 (2008)
  14. Varhegyi G, Antal MJ, Jakab E, Szabo P, Journal of Analytical and Applied Pyrolysis., 42(1), 73 (1997)
  15. Antal MJ, Varhegyi G, Jakab E, Ind. Eng. Chem. Res., 37(4), 1267 (1998)
  16. Branca C, Di Blasi C, Journal of Analytical and Applied Pyrolysis., 67(2), 207 (2003)
  17. Di Blasi C, Progress in Energy and Combustion Science., 34(1), 47 (2008)
  18. Varhegyi G, Antal MJ, Szekely T, Szabo P, Energy & Fuels., 3(3), 329 (1989)
  19. Vyazovkin S, Thermochimica Acta., 211, 181 (1992)
  20. Koga N, Thermochim. Acta, 244, 1 (1994)
  21. Vyazovkin S, Wight CA, International Reviews in Physical Chemistry., 17(3), 407 (1998)
  22. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE, J. Phys. Chem. A, 110(45), 12456 (2006)