화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.4, 913-917, April, 2013
Production of cyclic adenosine-3',5'-monophosphate by whole cell catalysis using recombinant Escherichia coli overexpressing adenylate cyclase
E-mail:,
Adenylate cyclase (EC 4.6.1.1) catalyzes the formation of cyclic adenosine-3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Recombinant Escherichia coli overexpressing adenylate cyclase was used to synthesize cAMP by whole cell catalysis. Some key parameters were examined during the catalytic process, while pH and Mg2+ were found to influence cAMP production significantly. Optimum conditions were pH 8.52 and 30 ℃ with 77.2 mM Mg2+ in 100 mM Tris-HCl buffer, including 0.25% Triton-X 100 as detergent and 30 mM pyruvate sodium as enzyme activator for 6 h. 14.93 g/L of cAMP was produced with a conversion rate of 91.5%. The current work provided a potential way for the industrial production of cAMP.
  1. Sutherland EW, Rall TW, J. Am. Chem. Soc., 79, 3608 (1957)
  2. Buettner MJ, Spitz E, Rickenberg HV, J. Bacteriol., 14, 1068 (1973)
  3. Adelstein RS, Hathaway DR, Am. J. Cardiol., 44, 783 (1979)
  4. Ando S, Kametani H, Osada H, Iwamoto M, Kimura N, Brain Res., 405, 371 (1987)
  5. Antoni FA, Front. Neuroendocrin., 21, 103 (2000)
  6. Sands WA, Palmer TM, Cell Signal., 20, 460 (2008)
  7. Hoonekamp PM, Bone., 6, 37 (1985)
  8. Tsai SF, Yang C, Wang SC, Wang JS, Hwang JS, Ho SP, Toxicol. Appl. Pharm., 194, 34 (2004)
  9. Kawada T, Yoshida Y, Imai S, Br. J. Pharmacol., 97, 371 (1989)
  10. Hong D, Peng XR, Chin. Pharmacol. Bull., 19, 940 (2003)
  11. Mcphee I, Gibson LCD, Kewney J, Darroch C, Stevens PA, Spinks D, Biochem. Soc. Trans., 33, 1330 (2005)
  12. Hirata M, Hayaishi O, Biochim. Biophys. Acta., 149, 1 (1976)
  13. Ishiyama J, Appl. Microbiol. Biotechnol., 34, 359 (1990)
  14. Chen XC, Song H, Fang T, Cao JM, Ren HJ, Bai JX, Xiong J, Ouyang PK, Ying HJ, Bioresour. Technol., 101(9), 3159 (2010)
  15. Ishige T, Honda K, Shimizu S, Curr. Opin. Chem. Biol., 9, 174 (2005)
  16. Wang X, Ma CQ, Wang XW, Xu P, J. Bacteriol., 189, 9030 (2007)
  17. Iyer PV, Ananthanarayan L, Process Biochem., 43, 1019 (2008)
  18. Chakraborty AA , Phadke RP, Chaudhary FA, Shete PS, Rao BS, Jasani KD, World J. Microbiol. Biotechnol., 21, 221 (2005)
  19. Zhou JW, Huang L, Lian JZ, Sheng JY, Cai J, Xu ZN, Biotechnol. Lett., 32(10), 1481 (2010)
  20. Gough S, Dostal L, Howe A, Deshpande M, Scher M, Rosazza JNP, Process Biochem., 40, 2597 (2005)
  21. Goldberg K, Schroer K, Lutz S, Liese A, Appl. Microbiol. Biotechnol., 76(2), 237 (2007)
  22. He Y, Li N, Chen Y, Chen XC, Bai JX, Wu JL, Xie JJ, Ying HJ, Appl. Microbiol. Biotechnol., DOI: 10.1007/s00253-012-3890-x. PMID:22290647 (2012 Jan. 31).
  23. Chen RRZ, Appl. Microbiol. Biotechnol., 74(4), 730 (2007)
  24. de Carvalho CCCR, Biotechnol. Adv., 29, 75 (2011)
  25. Bellalou J, Sarfati RS, Predeleanu R, Enzyme Microb. Technol., 10, 293 (1988)
  26. Bradford MM, Anal. Biochem., 72, 248 (1976)
  27. Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ, Bioresour. Technol., 100(2), 919 (2009)
  28. Li Y, Lu J, J. Am. Soc. Brew. Chem., 63, 171 (2005)
  29. Schnaitman CA, J. Bacteriol., 108, 545 (1971)