Macromolecular Research, Vol.20, No.12, 1281-1288, December, 2012
Green Synthesis of Size Controllable and Uniform Gold Nanospheres Using Alkaline Degradation Intermediates of Soluble Starch as Reducing Agent and Stabilizer
E-mail:
A green synthesis of size-controllable, uniform gold nanospheres is reported. The size of the gold particles can be selectively tuned from nanometer to submicrometer regimes with narrow size distribution through pH adjustment of the solution. Based on the employed green chemical reduction method, soluble starch is used as both reducing agent and stabilizer. Soluble starch is generally a very weak reducing agent. However, under an alkaline condition, its reducing efficiency is enhanced by the concomitant generation of reducing species as the starch molecules are alkaline degraded. The in situ generated reducing species nucleate and grow gold nanoparticles. The growth mechanism of gold particles is systematically investigated and proposed. The synthesized gold colloid is very stable and can be kept over 4 months without precipitation, aggregation, or any significant changes. Moreover, all processes of this method are simple and environmentally friendly, and no complex instrument is needed.
Keywords:gold nanoparticles;gold submicronparticles;gold nanospheres;green synthesis;soluble starch;alkaline degradation.
- Haynes CL, McFarland AD, Van Duyne RP, Anal.Chem., 77, 338 (2005)
- Seelenbinder JA, Brown CW, Pivarnik P, Rand AG, Anal. Chem., 71, 1963 (1999)
- Thaxton CS, Georganpoulou DG, Mirikin CA, Clin.Chim. Acta., 363, 120 (2006)
- Huang D, Liao F, Molesa S, Redinger D, Subramanian V, J. Electrochem. Soc., 150, 412 (2003)
- Hvolbeak B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK, Nanotoday., 2, 14 (2007)
- Sametband M, Shweky I, Banin U, Mandler D, Almog J, Chem. Commun.., 1142 (2007)
- Turkevich J, Stevenson PC, Hillier J, J. Phys. Chem., 57, 670 (1953)
- Corbierre MK, Beerens J, Lennox RB, Chem. Matter., 17, 5774 (2005)
- Link S, Wang ZL, El-Sayed MA, J. Phys. Chem. B, 103(18), 3529 (1999)
- Sun Y, Xia Y, Science., 298, 2176 (2002)
- Guo SJ, Wang EK, Inorg. Chem., 46(16), 6740 (2007)
- Dahl JA, Maddux BLS, Hutchison JE, Chem. Rev., 107(6), 2228 (2007)
- Raveendran P, Fu J, Wallen SL, J. Am. Chem. Soc., 125(46), 13940 (2003)
- Raveendran P, Fu J, Wallen SL, Green Chem., 8, 34 (2006)
- Huang HZ, Yang XR, Biomacromolecules, 5(6), 2340 (2004)
- Qi ZM, Zhou HS, Matsuda N, Honma I, Shimada K, Takatsu A, Kato K, J. Phys. Chem. B, 108(22), 7006 (2004)
- Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV, Carbohydr. Res., 341, 2012 (2006)
- Yang W, Ma Y, Tang J, Yang X, Colloids Surf. A: Physicochem. Eng. Asp., 302, 628 (2007)
- Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG, J. Am. Chem. Soc., 129(45), 13939 (2007)
- Zhang H, Xu JJ, Chen HY, AAPG Bull., 112, 13886 (2008)
- Ekgasit S, Pattayakorn N, Tongsakul D, Thammacharoen C, Kongyou T, Anal. Sci., 23, 863 (2007)
- Usher A, McPhail DC, Brugger J, Geochim. Cosmochim. Acta., 73, 3359 (2009)
- Link S, El-Sayed MA, J. Phys. Chem. B, 103(21), 4212 (1999)
- Krochta JM, Hudson JS, Tillin SJ, Am. Chem. Soc.Div. Fuel Chem., 32, 148 (1987)
- Golova OP, Nosova NI, Russ. Chem. Rev., 42, 327 (1973)
- Jackson DS, Choto-Owen C, Waniska RD, Rooney LW, Cereal Chem., 65, 493 (1988)
- Knill CJ, Kennedy JF, Carbohydr. Polym., 51, 281 (2003)
- Han JA, Lim ST, Carbohydr. Polym., 55, 193 (2004)
- Kizil R, Irudayaraj J, Seetharaman K, J. Agric. Food Chem.Chem., 50, 3912 (2002)
- Socrates G, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons Ltd, Chichester (2001)
- Jana, NR, Gearheart L, Murphy CJ, Chem. Mater., 13, 2313 (2001)