1 |
Selection of efficient absorbent for CO2 capture from gases containing low CO2 Kumar S, Mondal MK Korean Journal of Chemical Engineering, 37(2), 231, 2020 |
2 |
Thermodynamic modelling of CO2 absorption into aqueous solutions of 2-diethylaminoethanol, piperazine, and blended diethylaminoethanol with piperazine Afkhamipour M, Mofarahi M, Pakzad P, Lee CH Fluid Phase Equilibria, 493, 26, 2019 |
3 |
Economic assessment of carbon capture by minichannel absorbers Yang ZQ, Khan TS, Alshehhi M, AlWahedi YF AIChE Journal, 64(2), 620, 2018 |
4 |
Thermodynamic modelling using e-UNIQUAC model for CO2 absorption by novel amine solutions: 1-Dimethylamino-2-propanol (1DMA2P), 3-dimethylamino-l-propanol (3DMA1P) and 4-diethylamino-2-butanol (DEAB) Afkhamipour M, Mofarahi M, Lee CH Fluid Phase Equilibria, 473, 50, 2018 |
5 |
Aqueous amine solution characterization for post-combustion CO2 capture process El Hadri N, Quang DV, Goetheer ELV, Abu Zahra MRM Applied Energy, 185, 1433, 2017 |
6 |
Investigation of CO2 adsorption performance and fluidization behavior of mesoporous silica supported polyethyleneimine Quang DV, Soukri M, Tanthana J, Sharma P, Nelson TO, Lail M, Coleman LJI, Abu-Zahra MRM Powder Technology, 301, 449, 2016 |
7 |
Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution Fu D, Li ZX, Liu F Journal of Chemical Thermodynamics, 68, 20, 2014 |
8 |
Surface Tensions of Carbonated 2-Amino-2-methyl-1-propanol and Piperazine Aqueous Solutions Fu D, Liu F, Li ZX Chemical Engineering & Technology, 36(11), 1859, 2013 |
9 |
Experiment and model for the surface tension of carbonated MEA-MDEA aqueous solutions Fu D, Wei L, Liu ST Fluid Phase Equilibria, 337, 83, 2013 |
10 |
Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network Bastani D, Hamzehie ME, Davardoost F, Mazinani S, Poorbashiri A Fluid Phase Equilibria, 354, 6, 2013 |