화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.2, 231-239, February, 2020
Selection of efficient absorbent for CO2 capture from gases containing low CO2
E-mail:
Amine-based absorption processes are widely used in natural gas processing, but recently they have been considered for CO2 capture from flue gas emitted from thermal power plants. The main issue of amine used in the CO2 capture process is the high cost of solvent regeneration. So, this issue can be solved by using efficient amine absorbent. The amine type absorbents employed in the experimentation were an aqueous blend of 2-(Diethylamino)ethanol (DEEA) with different types of diamine activators such as piperazine (PZ), 2-(2-aminoethylamino)ethanol (AEEA), hexamethylenediamine (HMDA), ethylenediamine (EDA), and 3-(Dimethylamino)-1-propylamine (DMAPA). An absorption experiment was performed to evaluate the CO2 absorption performance in terms of CO2 loading, absorption capacity, and absorption rate. The experiment was performed to assess the CO2 desorption performance in terms of desorption capacity, desorption rate, cyclic capacity, and regeneration efficiency. From the results of absorptiondesorption and comparison with benchmark amine absorbent MEA, the aqueous blend of DEEA and HMDA indicated the best performance for CO2 capture applications among all the tested amine blends.
  1. IEA, World Energy Outlook 2016, International Energy Agency, Paris, France (2016).
  2. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
  3. Xu YX, Isom L, Hanna MA, Bioresour. Technol., 101(10), 3311 (2010)
  4. Ciferno JP, Fout TE, Jones AP, Murphy JT, Chem. Eng. Prog., 105(4), 33 (2009)
  5. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467 (2002)
  6. Xu B, Gao H, Luo X, Liao H, Liang Z, Int. J. Greenh. Gas Control, 51, 11 (2016)
  7. Kohl AL, Nielsen RB, Gas purification, 5th Ed., Gulf Publishing:Houston, TX (1997).
  8. Xiao M, Liu HL, Gao HX, Liang ZW, J. Chem. Thermodyn., 122, 170 (2018)
  9. Nouacer A, Belaribi FB, Mokbel I, Jose J, J. Mol. Liq., 190, 6 (2014)
  10. Ling H, Gao HX, Liang ZW, Chem. Eng. J., 355, 369 (2019)
  11. Narku-Tetteh J, Muchan P, Idem R, Sep. Purif. Technol., 187, 453 (2017)
  12. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275 (2017)
  13. Yu B, Yu H, Li KK, Yang Q, Zhang R, Li LC, Chen ZL, Appl. Energy, 208, 1308 (2017)
  14. Muchan P, Narku-Tetteh J, Saiwan C, Idem R, Supap T, Sep. Purif. Technol., 184, 128 (2017)
  15. Choi JH, Kim YE, Nam SC, Yun SH, Yoon YI, Lee JH, Korean J. Chem. Eng., 33(11), 3222 (2016)
  16. Liu S, Gao HX, He C, Liang ZW, Appl. Energy, 233, 443 (2019)
  17. Rochelle GT, Science, 325, 1652 (2009)
  18. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251 (2007)
  19. Dawodu OF, Meisen A, Can. J. Chem. Eng., 74, 960 (2010)
  20. Vega F, Sanna A, Navarrete B, Maroto-Valer MM, Cortes VJ, Greenh. Gases Sci. Technol., 4, 707 (2014)
  21. Gao HX, Wu ZY, Liu H, Luo X, Liang ZW, Energy Fuels, 31(12), 13883 (2017)
  22. Chakravarty T, Phukan UK, Weiland RH, Chem. Eng. Prog., 4, 32 (1985)
  23. Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2608 (2006)
  24. Sema T, Naami A, Fu KY, Edali M, Liu HL, Shi HC, Liang ZW, Idem R, Tontiwachwuthikul P, Chem. Eng. J., 209, 501 (2012)
  25. Benamor A, Al-Marri MJ, Int. J. Chem. Eng. Appl., 5, 4 (2014)
  26. Mandal BP, Bandyopadhyay SS, Chem. Eng. Sci., 61(16), 5440 (2006)
  27. Xiao J, Li CW, Li MH, Chem. Eng. Sci., 55(1), 161 (2000)
  28. Mandala BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58(18), 4137 (2003)
  29. Fu D, Hao H, Liu F, J. Mol. Liq., 188, 37 (2013)
  30. Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M, Ind. Eng. Chem. Res., 52(24), 8323 (2013)
  31. Vaidya PD, Kenig EY, Chem. Eng. Sci., 62(24), 7344 (2007)
  32. Vaidya PD, Kenig EY, Chem. Eng. Technol., 32(4), 556 (2009)
  33. Aronu UE, Svendsen HF, Hoff KA, Juliussen O, Energy Procedia, 1, 1051 (2009)
  34. Fu D, Wang LM, Mi CL, Zhang P, J. Chem. Thermodyn., 101, 123 (2016)
  35. Kim I, Svendsen HF, Int. J. Greenh. Gas Control, 5, 390 (2011)
  36. Liebenthal U, Pinto DDD, Monteiro JGMS, Svendsen HF, Kather A, Energy Procedia, 37, 1844 (2013)
  37. Xu ZC, Wang SJ, Chen CH, Ind. Eng. Chem. Res., 52(29), 9790 (2013)
  38. Kumar S, Mondal MK, J. Chem. Eng. Data, 63(5), 1163 (2018)
  39. Kumar S, Mondal MK, Korean J. Chem. Eng., 35(6), 1335 (2018)
  40. Gao HX, Xu B, Liu HL, Liang ZW, Energy Fuels, 30(9), 7481 (2016)
  41. Shen Y, Jiang CK, Zhang SH, Chen J, Wang LD, Chen JM, Appl. Energy, 230, 726 (2018)
  42. Zhang S, Du M, Shao P, Wang L, Ye J, Chen J, Chen J, Environ. Sci. Technol., 52, 12708 (2018)
  43. Zhang S, Shen Y, Shao P, Chen J, Wang L, Environ. Sci. Technol., 52, 3660 (2018)
  44. Ye J, Jiang C, Chen H, Shen Y, Zhang S, Wang L, Chen J, Environ. Sci. Technol., 53, 4470 (2019)
  45. Zhang SH, Shen Y, Wang LD, Chen JM, Lu YQ, Appl. Energy, 239, 876 (2019)
  46. Budzianowski WM, Int. J. Global Warming, 7(2), 184 (2015)
  47. Sutar PN, Vaidya PD, Kenig EY, Chem. Eng. Sci., 100, 234 (2013)
  48. Horwitz W, Official methods of analysis of the association of official analytical chemists 13th Ed., Benjamin Franklin Station, Washington, USA (1980).
  49. Gao HX, Wu ZY, Liu H, Luo X, Liang ZW, Energy Fuels, 31(12), 13883 (2017)
  50. Lee JI, Otto FD, Mather AE, J. Appl. Chem. Biotechnol., 26, 541 (1976)
  51. Shen KP, Li MH, J. Chem. Eng. Data, 37, 96 (1992)
  52. Song JH, Yoon JH, Lee H, Lee KH, J. Chem. Eng. Data, 41(3), 497 (1996)
  53. Shen SF, Yang YN, Wang Y, Ren SF, Han JZ, Chen AB, Fluid Phase Equilib., 399, 40 (2015)
  54. Du Y, Yuan Y, Rochelle GT, Chem. Eng. Sci., 155, 397 (2016)
  55. Singh P, Versteeg GF, Process Saf. Environ. Protect., 86(B5), 347 (2008)