화학공학소재연구정보센터
학회 한국재료학회
학술대회 2019년 가을 (10/30 ~ 11/01, 삼척 쏠비치 호텔&리조트)
권호 25권 2호
발표분야 특별심포지엄2. 재료공학에 적용 가능한 인공지능 기술 심포지엄-오거나이저:이승철(포항공대)
제목 A machine learning approach to establish microstructure-property linkages
초록 Microstructure based simulations are one of the most accurate ways in predicting and understanding how microstructural variables relate to properties of a material. Unfortunately, the simulations are only qualitatively used in optimizing materials microstructures or in establishing comprehensive structure-property linkages due to computational cost restrains. This research demonstrates that by utilizing machine learning techniques, one can alleviate the computational cost restrain and construct structure-property linkages for a wide range of microstructures using only a small number of full-field simulation results. Furthermore, with the implementation of Bayesian optimization, one can possibly identify microstructures that exhibit most desirable properties using even smaller number of full-field simulations.
저자 정재면1, 윤재익1, 박형근1, 김진유2, 김형섭1
소속 1포항공과대, 2POSCO
키워드 Microstructure; Machine learning; Gaussian process regression; Optimization
E-Mail