화학공학소재연구정보센터
학회 한국화학공학회
학술대회 2017년 봄 (04/26 ~ 04/28, ICC 제주)
권호 23권 1호, p.1308
발표분야 화학/에너지/환경시스템의 빅데이터 응용 심포지엄(공정시스템부문위원회)
제목 감독학습 문제에서 특징선택 방법에 대한 소고
초록 In this work, several computational methods are applied to feature selection for supervised learning problems. Methods are compared in three case studies in two representative supervised learning cases; (i) regression: multivariate calibration of soil carbonate content using Fourier transform mid-infrared (FT-MIR) spectral information, descriptor selection in quantitative structure retention time relationship modeling, and (ii) classification: diagnosis of prostate cancer patients using gene expression information. Beside quantitative performance measures: error and accuracy often used in feature selection studies, a qualitative measure, the selection index (SI), is introduced to evaluate the methods in terms of quality of selected features. Robustness is evaluated introducing artificially generated noise variables to both datasets.
저자 유 준
소속 부경대
키워드 감독학습; 특징선택; 회귀 모델링; 분류
E-Mail
VOD VOD 보기
원문파일 초록 보기